1
|
Chakraborty S, Anand S, Numan M, Bhandari RK. Ancestral bisphenol A exposure led to non-alcoholic fatty liver disease and sex-specific alterations in proline and bile metabolism pathways in the liver. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:958-972. [PMID: 39953842 PMCID: PMC11933882 DOI: 10.1093/etojnl/vgae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 02/17/2025]
Abstract
Endocrine-disrupting chemicals can induce metabolic alterations, resulting in diseases such as obesity, diabetes, and fatty liver disease, which can be inherited by offspring inhabiting uncontaminated environments. Bisphenol A (BPA), a well-known endocrine disruptor, can induce endocrine disruption, leading to metabolic disorders in subsequent generations without further exposure to BPA via nongenetic transgenerational inheritance. Using medaka as an animal model, we reported that ancestral BPA exposure leads to transgenerational nonalcoholic fatty liver disease (NAFLD) in grandchildren four generations after the initial exposure. It is unclear if transgenerational NAFLD developed because ancestral BPA exposure differs from that developed due to direct and continuous BPA exposure because the transgenerational disease develops in the absence of the stressor. We induced transgenerational NAFLD in medaka with ancestral BPA exposure (10 µg/L) at the F0 generation and examined transcriptional and metabolomic alterations in the liver of the F4 generation fish that continued to develop NAFLD. To understand the etiology of NAFLD in unexposed generations, we performed nontargeted liquid chromatography-mass spectrometry-based metabolomic analysis in combination with bulk RNA sequencing and determined biomarkers, co-expressed gene networks, and sex-specific pathways triggered in the liver. An integrated analysis of metabolomic and transcriptional alterations revealed a positive association with the severity of the NAFLD disease phenotype. Females showed increased NAFLD severity and had metabolic disruption involving proline metabolism, tryptophan metabolism, and bile metabolism pathways. The present results provide the transcriptional and metabolomic underpinning of metabolic disruption caused by ancestral BPA exposure, providing avenues for further research to understand the development and progression of transgenerational NAFLD caused by ancestral bisphenol A exposure.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Santosh Anand
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Muhammad Numan
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, United States
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
2
|
Chakraborty S, Anand S, Wang X, Bhandari RK. Stable Transmission of DNA Methylation Epimutations from Germlines to the Liver and Their Association with Fatty Liver Disease in Medaka. RESEARCH SQUARE 2025:rs.3.rs-6010210. [PMID: 39989969 PMCID: PMC11844629 DOI: 10.21203/rs.3.rs-6010210/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Environmental stressors can induce heritable traits in organisms across phyla, with distinct epigenetic alterations in gametes and phenotypic outcomes across several generations. However, the mechanisms underlying such intergenerational inheritance, mainly from the germline to the germline and from the germline to the soma, are enigmatic, given that postfertilization embryos and germline cells reprogram the epigenome in each generation to gain their cellular identity. Here, we report stable germline transmission of differential DNA methylation alterations (epimutations) and their associations with nonalcoholic fatty liver disease (NAFLD) in medaka exposed to a model estrogenic chemical but a ubiquitous environmental contaminant, bisphenol A (BPA). Results Ancestral BPA exposure in the F0 generation led to advanced NAFLD in the unexposed grandchildren generation (F2) of medaka. The F2 liver transcriptome and histopathology revealed a severe NAFLD phenotype in females. Whole-genome bisulfite sequencing of the sperm and liver revealed a gradual shift in promoter methylation from F0 sperm (hypomethylated) to F1 sperm (mix of hypo- and hypermethylated) and F2 liver (predominantly hypermethylated). Many differentially methylated promoters (DMPs) overlapped in F0 sperm, F1 sperm, and F2 liver, regardless of sex. In females, stable transmission of 1511 DMPs was found across three generations, which are associated with protein-coding genes, miRNAs, and others and linked to NAFLD and nonalcoholic steatohepatitis (NASH). Among them, 27 canonical genes maintained consistently hypermethylated promoters across three generations, with significant downregulation of their expression and enrichment in NAFLD-related pathways, mainly fat digestion, glycerolipid metabolism, and steroid biosynthesis. Conclusions The present results demonstrate stable inter- and transgenerational germline-to-germline and germline-to-soma transmission of environmentally induced DNA epimutations with F0 and F1 gametic epimutations, predicting the F2 liver phenotype-a clear transgenerational passage of the disease phenotype in medaka.
Collapse
|
3
|
Zhang Y, Han S, Li T, Zhu L, Wei F. Bisphenol A induces non-alcoholic fatty liver disease by promoting the O-GlcNAcylation of NLRP3. Arch Physiol Biochem 2024; 130:814-822. [PMID: 38038745 DOI: 10.1080/13813455.2023.2288533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease. The mechanism by which bisphenol A (BPA) promots NAFLD remains unclear. Palmitic acid (PA) and lipopolysaccharide (LPS) were used to simulate NAFLD in HepG2 cells in vitro. Total cholesterol (TC), triglyceride (TG) content, and lipid accumulation were measured to evaluate lipid metabolism. The caspase-1-stained cells and NLRP3 inflammasome-associated proteins were evaluated for pyroptosis. Western blot analysis was used to detect protein levels and co-immunoprecipitation (Co-IP) was used to detect the association between the proteins. Cycloheximide (CHX) treatment combined with western blot was performed to access protein stability. This data have shown that BPA induces lipid metabolism dysfunction and pyroptosis by upregulating O-GlcNAc transferase (OGT) level. NLRP3 directly interacts with OGT, and elevated OGT enhanced the stability of NLRP3 protein. BPA promoted OGT-mediated O-GlcNAcylation to stabilised NLRP3, thus accelerating NAFLD progress in vitro. Our study reveals that BPA, as an environmental factor, may be involved in the promotion of NAFLD, and that targeting NLRP3 and OGT may inhibit BPA's induction of NAFLD.
Collapse
Affiliation(s)
- Yonghong Zhang
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical Collage, Inner Mongolia University of Science and Technology, Baotou, PR China
| | - Shujuan Han
- Baotou Medical Collage, Inner Mongolia University of Science and Technology, Baotou, PR China
| | - Tian Li
- Baotou Medical Collage, Inner Mongolia University of Science and Technology, Baotou, PR China
| | - Li Zhu
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical Collage, Inner Mongolia University of Science and Technology, Baotou, PR China
| | - Feng Wei
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical Collage, Inner Mongolia University of Science and Technology, Baotou, PR China
| |
Collapse
|
4
|
Coe ST, Chakraborty S, Faheem M, Kupradit K, Bhandari RK. A second hit by PFOS exposure exacerbated developmental defects in medaka embryos with a history of ancestral BPA exposure. CHEMOSPHERE 2024; 362:142796. [PMID: 38972462 PMCID: PMC11309894 DOI: 10.1016/j.chemosphere.2024.142796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Bisphenol-A (BPA), a known endocrine-disrupting chemical (EDC) in plastics and resins, has been found to induce heritable health effects in fish and mammals, affecting directly exposed individuals and indirectly their progenies in subsequent generations. It is not clearly understood if subsequent generations of the BPA-exposed ancestors have increased sensitivity to the second hit by the chemicals of emerging concern. To understand this, the present study examined the effects of developmental exposure to perfluorooctanesulfonic acid (PFOS), which has been a global contaminant recently, in embryos whose ancestors were exposed to BPA. Two lineages of medaka (Oryzias latipes) were established: 1) the BPA lineage in which the F0 generation was exposed to 10 μg/L BPA during early development and 2) the control lineage with no BPA exposure in the F0 generation. These lineages were raised up to the F4 generation without further exposure. The embryos of the F4 generation were exposed to PFOS at 0, 0.002, 0.02, 0.2, 2, and 20 mg/L concentrations. Early developmental defects resulting in mortality, delayed hatching, teratogenic phenotypes, and altered gene expression were examined in both lineages. The expression level of genes encoding DNA methyltransferases and genes responsible for oxidative stress defense were determined. Following environmentally relevant PFOS exposure, organisms with a history of BPA exposure displayed significant changes in all categories of developmental defects mentioned above, including increased expression of genes related to oxidative stress, compared to individuals without BPA exposure. The present study provides initial evidence that a history of ancestral BPA exposure can alter sensitivity to developmental disorders following the second hit by PFOS exposure. The variable of ancestral BPA exposure could be considered in mechanistic, medical, and regulatory toxicology, and can also be applied to holistic environmental equity research.
Collapse
Affiliation(s)
- Seraiah T Coe
- Department of Biology, University of North Carolina at Greensboro, NC, 27412, USA
| | - Sourav Chakraborty
- Department of Biology, University of North Carolina at Greensboro, NC, 27412, USA; Division of Biological Sciences, University of Missouri Columbia, MO, 65211, USA
| | - Mehwish Faheem
- Division of Biological Sciences, University of Missouri Columbia, MO, 65211, USA
| | - Karabuning Kupradit
- Department of Biology, University of North Carolina at Greensboro, NC, 27412, USA
| | - Ramji K Bhandari
- Division of Biological Sciences, University of Missouri Columbia, MO, 65211, USA.
| |
Collapse
|
5
|
Chakraborty S, Anand S, Bhandari RK. Medaka liver developed Human NAFLD-NASH transcriptional signatures in response to ancestral bisphenol A exposure. RESEARCH SQUARE 2024:rs.3.rs-4585175. [PMID: 39070641 PMCID: PMC11275980 DOI: 10.21203/rs.3.rs-4585175/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The progression of fatty liver disease to non-alcoholic steatohepatitis (NASH) is a leading cause of death in humans. Lifestyles and environmental chemical exposures can increase the susceptibility of humans to NASH. In humans, the presence of bisphenol A (BPA) in urine is associated with fatty liver disease, but whether ancestral BPA exposure leads to the activation of human NAFLD-NASH-associated genes in the unexposed descendants is unclear. In this study, using medaka fish as an animal model for human NAFLD, we investigated the transcriptional signatures of human NAFLD-NASH and their associated roles in the pathogenesis of the liver of fish that were not directly exposed, but their ancestors were exposed to BPA during embryonic and perinatal development three generations prior. Comparison of bulk RNA-Seq data of the liver in BPA lineage male and female medaka with publicly available human NAFLD-NASH patient data revealed transgenerational alterations in the transcriptional signature of human NAFLD-NASH in medaka liver. Twenty percent of differentially expressed genes (DEGs) were upregulated in both human NAFLD patients and medaka. Specifically in females, among the total shared DEGs in the liver of BPA lineage fish and NAFLD patient groups, 27.69% were downregulated, and 20% were upregulated. Of all DEGs, 52.31% of DEGs were found in ancestral BPA-lineage females, suggesting that NAFLD in females shared the majority of human NAFLD gene networks. Pathway analysis revealed beta-oxidation, lipoprotein metabolism, and HDL/LDL-mediated transport processes linked to downregulated DEGs in BPA lineage males and females. In contrast, the expression of genes encoding lipogenesis-related proteins was significantly elevated in the liver of BPA lineage females only. BPA lineage females exhibiting activation of myc, atf4, xbp1, stat4, and cancerous pathways, as well as inactivation of igf1, suggest their possible association with an advanced NAFLD phenotype. The present results suggest that gene networks involved in the progression of human NAFLD and the transgenerational NAFLD in medaka are conserved and that medaka can be an excellent animal model to understand the development and progression of liver disease and environmental influences in the liver.
Collapse
|
6
|
Chen Z, Li X, Gao J, Liu Y, Zhang N, Guo Y, Wang Z, Dong Z. Reproductive toxic effects of chronic exposure to bisphenol A and its analogues in marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106927. [PMID: 38643640 DOI: 10.1016/j.aquatox.2024.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
As awareness of BPA's health risks has increased, many countries and regions have implemented strict controls on its use. Consequently, bisphenol analogues like BPF and BPAF are being increasingly used as substitutes. However, these compounds are also becoming increasingly prevalent in the environment due to production, use and disposal processes. The oceans act as a repository for various pollutants, and recent studies have revealed the extensive presence of bisphenols (BPs, including BPA, BPF, BPAF, etc.) in the marine environment, posing numerous health hazards to marine wildlife. Nevertheless, the reproductive toxicity of these chemicals on marine fish is not comprehensively comprehended yet. Thus, the histological features of the gonads and the gene expression profiles of HPG (Hypothalamic-Pituitary-Gonadal) axis-related genes in marine medaka (Oryzias melastigma) were studied after exposure to single and combined BPs for 70 days. The effects of each exposure group on spawning, embryo fertilization, and hatching in marine medaka were also assessed. Furthermore, the impacts of each exposure group on the genes related to methylation in the F2 and F3 generations were consistently investigated. BPs exposure was found to cause follicular atresia, irregular oocytes, and empty follicles in the ovary; but no significant lesions in the testis were observed. The expression of several HPG axis genes, including cyp19b, 17βhsd, 3βhsd, and fshr, resulted in significant changes compared to the control group. The quantity of eggs laid and fertilization rate decreased in all groups treated with BPs, with the BPAF-treated group showing a notable reduction in the number of eggs laid. Additionally, the hatching rate showed a more significant decline in the BPF-treated group. The analysis of methylated genes in the offspring of bisphenol-treated groups revealed significant changes in the expression of genes including amh, dnmt1, dnmt3ab, mbd2, and mecp2, indicating a potential transgenerational impact of bisphenols on phenotype through epigenetic modifications. Overall, the potential detrimental impact of bisphenol on the reproduction of marine medaka emphasizes the need for caution in considering the use of BPAF and BPF as substitutes.
Collapse
Affiliation(s)
- Zuchun Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Xueyou Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Yue Liu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China.
| |
Collapse
|
7
|
Chakraborty S, Anand S, Bhandari RK. Sex-specific expression of the human NAFLD-NASH transcriptional signatures in the liver of medaka with a history of ancestral bisphenol A exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594843. [PMID: 38826193 PMCID: PMC11142124 DOI: 10.1101/2024.05.19.594843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The progression of fatty liver disease to non-alcoholic steatohepatitis (NASH) is a leading cause of death in humans. Lifestyles and environmental chemical exposures can increase the susceptibility of humans to NASH. In humans, the presence of bisphenol A (BPA) in urine is associated with fatty liver disease, but whether ancestral BPA exposure leads to the activation of human NAFLD-NASH-associated genes in the unexposed descendants is unclear. In this study, using medaka fish as an animal model for human NAFLD, we investigated the transcriptional signatures of human NAFLD-NASH and their associated roles in the pathogenesis of the liver of fish who were not directly exposed but their ancestors were exposed to BPA during embryonic and perinatal development three generations prior. Comparison of bulk RNA-Seq data of the liver in BPA lineage male and female medaka with publicly available human NAFLD-NASH patient data revealed transgenerational alterations in the transcriptional signature of human NAFLD-NASH in medaka liver. Twenty percent of differentially expressed genes (DEGs) were upregulated in both human NAFLD patients and medaka. Specifically in females, among the total shared DEGs in the liver of BPA lineage fish and NAFLD patient groups, 27.69% DEGs were downregulated and 20% DEGs were upregulated. Off all DEGs, 52.31% DEGs were found in ancestral BPA-lineage females, suggesting that NAFLD in females shared majority of human NAFLD gene networks. Pathway analysis revealed beta-oxidation, lipoprotein metabolism, and HDL/LDL-mediated transport processes linked to downregulated DEGs in BPA lineage males and females. In contrast, the expression of genes encoding lipogenesis-related proteins was significantly elevated in the liver of BPA lineage females only. BPA lineage females exhibiting activation of myc, atf4, xbp1, stat4, and cancerous pathways, as well as inactivation of igf1, suggest their possible association with an advanced NAFLD phenotype. The present results suggest that gene networks involved in the progression of human NAFLD and the transgenerational NAFLD in medaka are conserved and that medaka can be an excellent animal model to understand the development and progression of liver disease and environmental influences in the liver.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, U.S.A
| | - Santosh Anand
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, U.S.A
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
8
|
Chakraborty S, Anand S, Coe S, Reh B, Bhandari RK. The PCOS-NAFLD Multidisease Phenotype Occurred in Medaka Fish Four Generations after the Removal of Bisphenol A Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12602-12619. [PMID: 37581432 PMCID: PMC10469501 DOI: 10.1021/acs.est.3c01922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/16/2023]
Abstract
As a heterogeneous reproductive disorder, polycystic ovary syndrome (PCOS) can be caused by genetic, diet, and environmental factors. Bisphenol A (BPA) can induce PCOS and nonalcoholic fatty liver disease (NAFLD) due to direct exposure; however, whether these phenotypes persist in future unexposed generations is not currently understood. In a previous study, we observed that transgenerational NAFLD persisted in female medaka for five generations (F4) after exposure to an environmentally relevant concentration (10 μg/L) of BPA. Here, we demonstrate PCOS in the same F4 generation female medaka that developed NAFLD. The ovaries contained immature follicles, restricted follicular progression, and degenerated follicles, which are characteristics of PCOS. Untargeted metabolomic analysis revealed 17 biomarkers in the ovary of BPA lineage fish, whereas transcriptomic analysis revealed 292 genes abnormally expressed, which were similar to human patients with PCOS. Metabolomic-transcriptomic joint pathway analysis revealed activation of the cancerous pathway, arginine-proline metabolism, insulin signaling, AMPK, and HOTAIR regulatory pathways, as well as upstream regulators esr1 and tgf signaling in the ovary. The present results suggest that ancestral BPA exposure can lead to PCOS phenotypes in the subsequent unexposed generations and warrant further investigations into potential health risks in future generations caused by initial exposure to EDCs.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27412 North Carolina, United
States
| | - Santosh Anand
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27412 North Carolina, United
States
| | - Seraiah Coe
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27412 North Carolina, United
States
| | - Beh Reh
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27412 North Carolina, United
States
| | - Ramji Kumar Bhandari
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27412 North Carolina, United
States
| |
Collapse
|