1
|
Yue J, Guo W, Liang S, Du X, Li Z, Wang X, Zhang B, Li J. Comparative study on the degradation of sucralose by UV/persulfate and UV/periodate processes: Performance, dechlorination, and technical feasibility. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138313. [PMID: 40245714 DOI: 10.1016/j.jhazmat.2025.138313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Sucralose (SUC) pose a potential threat to the aquatic environment and human health. In the study, SUC degradation by UV/persulfate (UV/PS) and UV/periodate (UV/PI) was compared from different perspectives. The results showed that both processes were effective in degrading SUC within 15 min, but the degradation rate of UV/PI was much higher than that of UV/PS due to higher radical concentrations. UV/PS and UV/PI are more suitable for the degradation of SUC under neutral and alkaline conditions. The presence of Cl- and HCO3- mainly inhibited SUC degradation by UV/PI, while NO3- was more likely to inhibit SUC degradation by UV/PS. •OH and SO4•- in UV/PS degraded SUC mainly by hydroxylation, hydrogen atom abstraction, dehydration, and direct oxidation. In UV/PI, in addition to the above-mentioned actions, IO3• initiates a deep oxidation process by destroying the ether bonds. After 15 min of oxidation, dechlorination of SUC by UV/PI and UV/PS was 35.1 % and 22.9 %. Dechlorination is mainly achieved by the chlorine atoms abstraction from •OH and the single electron transfer of IO3•. UV/PI is recommended as a SUC degradation process with lower cost (55.8 % lower) and safer inorganic product (isometric IO3-) than UV/PS with similar detoxification effect.
Collapse
Affiliation(s)
- Junhui Yue
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Shengxu Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Xuan Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Zhuohao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Xingyue Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Bo Zhang
- Chinese Research Academy of Environmental Sciences (CRAES), Beijing 100012, China.
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Li J, Li X, Li Y, Liu H, Wang Q. Artificial sweeteners in wastewater treatment plants: A systematic review of global occurrence, distribution, removal, and degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138644. [PMID: 40393290 DOI: 10.1016/j.jhazmat.2025.138644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 05/02/2025] [Accepted: 05/15/2025] [Indexed: 05/22/2025]
Abstract
The widespread use of artificial sweeteners in foods, drinks, and pharmaceuticals has led to rising concentrations in wastewater, with specific sweeteners raising concerns due to demonstrated toxicological risks to ecosystems and humans. To date, a comprehensive summary of the occurrence, distribution, and removal status of artificial sweeteners in wastewater treatment plants (WWTP) is lacking, making it difficult to evaluate the associated risks and environmental impacts. We conducted a systematic review of scientific literature and grey literature with rigorous screening covering 24 countries and 6 continents. Globally, sucralose, acesulfame, saccharin, and cyclamate are prevalent artificial sweeteners in WWTP, with concentrations of 0.6-303.0 µg/L in influent and 0.1-81.2 µg/L in effluent. Sucralose showed obvious increasing concentrations over time in wastewater in the United States and Canada, with an increase of 5.6-5.7 µg/L·y in influent and 4.7-5.5 µg/L·y in effluent. Summer wastewater usually contains 11.1-33.3 % higher concentrations of artificial sweeteners than other seasons. Saccharin and cyclamate are the most easily removable sweeteners (>90.0 % removal) in WWTP, followed by acesulfame (25.0-70.1 %) and sucralose (-10.0-10.0 %). Wastewater treatment processes with longer HRT and more diverse microbial communities showed better performance in sucralose removal, while processes with aerobic conditions showed better performance in acesulfame and saccharin removal than anaerobic processes. Increasing trends for persistent sucralose and acesulfame removal have been observed globally, suggesting potential microbial evolution/adaptation. This review contributes to a comprehensive understanding of the spatiotemporal distribution and ever-evolving biodegradation of artificial sweeteners in WWTP, providing future perspectives and potential policy requirements.
Collapse
Affiliation(s)
- Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Yi Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
3
|
Li D, Xing Y, Li L, Yao Y, Li Y, Zhu H, Du P, Wang F, Yu D, Yang F, Yao Z, Thomas KV. Accumulation, translocation and transformation of artificial sweeteners in plants: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125517. [PMID: 39667574 DOI: 10.1016/j.envpol.2024.125517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Artificial sweeteners (ASs) have become an increasingly significant concern as an emerging contaminant. The widespread utilization has given rise to environmental consequences that are progressively harder to disregard. ASs infiltrate both aquatic and terrestrial ecosystems through the discharge of wastewater effluents and the application of manure and biosolids. These compounds can be absorbed and accumulated by plants from soil, water and the atmosphere, posing potential risks to ecological systems and human health. However, limited data available on plant absorption, translocation, and metabolism of ASs hinders a comprehensive understanding of their impact on ecosystem. This study aims to comprehensively summarize the global distribution of ASs, along with elucidating patterns of their uptake and accumulation within plants. Furthermore, it seeks to elucidate the pivotal factors governing ASs absorption and translocation, encompassing hydrophilicity, ionic nature, plant physiology, and environmental conditions. Notably, there remains a significant knowledge gap in understanding the biodegradation of ASs within plants, with their specific degradation pathways and mechanisms largely unexplored, thereby necessitating further investigation. Additionally, this review provides valuable insights into the ecotoxicological effects of ASs on plants. Finally, it identifies research gaps and outlines potential avenues for future research, offering a forward-looking perspective on this critical issue.
Collapse
Affiliation(s)
- Dandan Li
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yeye Xing
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Li Li
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557-0274, USA
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yongcheng Li
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557-0274, USA
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Fang Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Dayang Yu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| |
Collapse
|
4
|
Li D, Li J, Zhu Y, Wu Y, Du L, Wu Y, Li J, Guo W. Responses of SNEDPR-AGS system under long-term exposure of polyethylene terephthalate microplastics for treating low C/N wastewater: Granular effect and microbial structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136299. [PMID: 39467437 DOI: 10.1016/j.jhazmat.2024.136299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
The removal of nutrients in sewage treatment plants can be significantly impacted by carbon limitations, especially for treating low carbon to nitrogen ratio (C/N) wastewater, which can markedly increase operational costs. Simultaneous nitrification, endogenous denitrification, and phosphorus removal combined with aerobic granular sludge (SNEDPR-AGS) has emerged as one of the optimal processes for treating low C/N wastewater owing to its high carbon utilization efficiency; however, the long-term effect of microplastics (MPs) on this system remains unclear. This study investigated the granular effect and microbial response of an SNEDPR-AGS system for treating low C/N wastewater under long-term exposure (180 d) to polyethylene terephthalate microplastics (PET-MPs). The results showed that the integrity of the AGS structure was disrupted significantly as the PET-MP concentration increased, with clear AGS cracks appearing on days 180, 124, and 74 after exposure to 1, 10, and 100 mg/L of PET-MPs, respectively. Additionally, the addition of PET-MPs also inhibited denitrification and phosphorus removal due to a decrease in the relative abundance of functional genes (napAB, nirK/nirS, ppk1, ppk2, and ppx). Notably, both chemometric and high-throughput sequencing results indicated that the metabolic form of the system would shift from a polyphosphate-accumulating metabolism to a glycogen-accumulating metabolism. The reason may be that PET-MP stress inhibited the relative abundance of functional genes related to carbon, glycogen, phosphorus, and energy metabolism pathways in Candidatus Accumulibacter and Dechloromonas, but promoted their relative abundance of Candidatus Competibacter. Flow cytometry and molecular docking simulations have also demonstrated the direct toxic effects of PET-MPs on the SNEDPR-AGS system. The biological enhancement and functional recovery of damaged SNEDPR-AGS systems must be further investigated in future studies.
Collapse
Affiliation(s)
- Dongyue Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jiarui Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuhan Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yaodong Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Linzhu Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yanshuo Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
5
|
Jiang J, Hou R, Cui H, Tang Z, Yousif Abdellah YA, Chater CCC, Cheng K, Yu F, Liu D. Removal of artificial sweeteners in wastewater treatment plants and their degradation during sewage sludge composting with micro- and nano-sized kaolin. BIORESOURCE TECHNOLOGY 2024; 406:131060. [PMID: 38950831 DOI: 10.1016/j.biortech.2024.131060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
This study surveyed the fates of artificial sweeteners in influent, effluent, and sewage sludge (SS) in wastewater treatment plant, and investigated the effects of Micro-Kaolin (Micro-KL) and Nano-Kaolin (Nano-KL) on nitrogen transformation and sucralose (SUC) and acesulfame (ACE) degradation during SS composting. Results showed the cumulative rate of ACE and SUC in SS was ∼76 %. During SS composting, kaolin reduced NH3 emissions by 30.2-45.38 %, and N2O emissions by 38.4-38.9 %, while the Micro-KL and Nano-KL reduced nitrogen losses by 14.8 % and 12.5 %, respectively. Meanwhile, Micro-KL and Nano-KL increased ACE degradation by 76.8 % and 84.2 %, and SUC degradation by 75.3 % and 77.7 %, and significantly shifted microbial community structure. Furthermore, kaolin caused a positive association between Actinobacteria and sweetener degradation. Taken together, kaolin effectively inhibited nitrogen loss and promoted the degradation of ACE and SUC during the SS composting, which is of great significance for the removal of emerging organic pollutants in SS.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Rui Hou
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huilin Cui
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhuyu Tang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yousif Abdelrahman Yousif Abdellah
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK; Plants, Photosynthesis, and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Ke Cheng
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| |
Collapse
|
6
|
Qiao S, Huang W, Kuzma D, Kormendi A. Acesulfame and other artificial sweeteners in a wastewater treatment plant in Alberta, Canada: Occurrence, degradation, and emission. CHEMOSPHERE 2024; 356:141893. [PMID: 38582168 DOI: 10.1016/j.chemosphere.2024.141893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Acesulfame (ACE), sucralose (SUC), cyclamate (CYC), and saccharin (SAC) are widely used artificial sweeteners that undergo negligible metabolism in the human body, and thus ubiquitously exist in wastewater treatment plants (WWTPs). Due to their persistence in WWTPs, ACE and SUC are found in natural waters globally. Wastewater samples were collected from the primary influent, primary effluent, secondary effluent, and final effluent of a WWTP in Alberta, Canada between August 2022 and February 2023, and the artificial sweeteners concentrations were measured by LC-MS/MS. Using wastewater-based epidemiology, the daily per capita consumption of ACE in the studied wastewater treatment plant catchment was estimated to be the highest in the world. Similar to other studies, the removal efficiency in WWTP was high for SAC and CYC, but low or even negative for SUC. However, ACE removal remained surprisingly high (>96%), even in the cold Canadian winter months. This result may indicate a further adaptation of microorganisms capable of biodegrading ACE in WWTP. The estimated per capita discharge into the environment of ACE, CYC, and SAC is low in Alberta due to the prevalent utilization of secondary treatment throughout the province, but is 17.4-18.8 times higher in Canada, since only 70.3% of total discharged wastewater in Canada undergoes secondary treatment.
Collapse
Affiliation(s)
- Shuang Qiao
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Wendy Huang
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Darina Kuzma
- Advancing Canadian Water Assets, University of Calgary, 3131 210 Ave SE, Calgary, Alberta, T0L 0X0, Canada
| | - Aleshia Kormendi
- Advancing Canadian Water Assets, University of Calgary, 3131 210 Ave SE, Calgary, Alberta, T0L 0X0, Canada
| |
Collapse
|