1
|
Matlou TD, Matotoka MM, Mnisi TJ, Masoko P. Biological Activities of Leonotis ocymifolia (Burm.f.) and Its Antibacterial Activities Against ESKAPE Pathogens. Antibiotics (Basel) 2025; 14:238. [PMID: 40149049 PMCID: PMC11939289 DOI: 10.3390/antibiotics14030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The rise in antibiotic-resistant ESKAPE pathogens, which are responsible for severe and hard-to-treat infections, highlights the urgent need for alternative therapeutic agents. While species in the Leonotis genus have demonstrated antimicrobial potential, limited research exists on Leonotis ocymifolia. This study evaluated the phytochemical profiles and antioxidant, antibacterial, and antibiofilm activities of L. ocymifolia leaf and stem extracts. Methods: Acidified acetone and hexane were used for extraction, followed by liquid-liquid fractionation with dichloromethane (DCM), ethyl acetate, and butanol. Phytochemicals were profiled using thin-layer chromatography (TLC), while polyphenolic content and antioxidant activity were determined using colorimetric and DPPH assays, respectively. Antibacterial activity was assessed via bioautography and micro-broth dilution assays. Antibiofilm activities were evaluated using crystal violet staining, and metabolic activity was assessed using tetrazolium salt as a cell viability indicator. Results: Ethyl acetate fractions had the highest phenolic (98.15 ± 9.63 mg GAE/g) and tannin contents (108.28 ± 8.78 mg GAE/g), with strong DPPH scavenging activity (79-90% at 250 µg/mL). DCM extracts had potent antibacterial activity, with a minimum inhibitory concentration (MIC) of 0.31-0.625 mg/mL against Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae. Antibiofilm assays revealed over 50% inhibition across biofilm formation phases, with DCM leaf extracts disrupting biofilms by inhibiting microbial metabolism. Conclusions: This study highlights L. ocymifolia as a promising source of bioactive compounds with significant antioxidant and antibacterial properties. The DCM and ethyl acetate extracts demonstrated high polyphenol content and effective biofilm inhibition. Further studies are warranted to isolate bioactive compounds and elucidate their mechanisms of action.
Collapse
Affiliation(s)
| | | | | | - Peter Masoko
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovena 0727, South Africa; (T.D.M.); (M.M.M.); (T.J.M.)
| |
Collapse
|
2
|
Liu Y, Wu Y, Zhao Y, Niu J, Wang Q, Bamanu B, Hussain A, Liu Y, Tong Y, Li YY. Multidimensional Insights into Organics Stress on Anammox systems: From a "Molecule-Cell-Ecology" Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20768-20784. [PMID: 39468881 DOI: 10.1021/acs.est.4c02781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is efficient and cost-effective for treating high-strength ammonia wastewater, but the organics in wastewater will affect its stability. To address this challenge, it is crucial to gain a deep understanding of the inhibitory effects and mechanisms of organics stress on anammox bacteria. The review provided a comprehensive classification of organics and evaluated their specific effects on the anammox system according to their respective characteristics. Based on the micro to macro perspective, the "molecule-cell-ecology" inhibitory mechanism of organics on anammox bacteria was proposed. The molecular observation systematically summarized the binding process and action sites of organics with anammox bacteria. At the cellular observation, the mechanisms of organics effects on extracellular polymeric substances, membranes, and anammoxosome of anammox bacteria were also expounded. At the ecological observation, the dynamic changes in coexisting populations and their role in organics transformation were further discussed. Further revelations on response mechanisms and inhibition mitigation strategies were proposed to broaden the applicability of anammox systems for organic wastewater. This review offered a multidimensional understanding of the organics inhibitory mechanism of anammox bacteria and provided a theoretical foundation for anammox systems.
Collapse
Affiliation(s)
- Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Arif Hussain
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
3
|
Gao Y, Guo Y, Wang L, Guo L, Shi B, Zhu L, Wang J, Kim YM, Wang J. Tebuconazole exacerbates co-occurrence and horizontal transfer of antibiotic resistance genes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106026. [PMID: 39277355 DOI: 10.1016/j.pestbp.2024.106026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/17/2024]
Abstract
As one of the most widely used pesticides in the global fungicide market, tebuconazole has become heavily embedded in soil along with antibiotic resistance genes (ARGs). However, it remains unclear whether the selective pressure produced by tebuconazole affects ARGs and their horizontal transfer. In this experiment, we simulated a tebuconazole-contaminated soil ecosystem and observed changes in the abundance of ARGs and mobile genetic element (MGEs) due to tebuconazole exposure. We also established a plasmid RP4-mediated conjugative transfer system to investigate in depth the impact of tebuconazole on the horizontal transfer of ARGs and its mechanism of action. The results showed that under tebuconazole treatment at concentrations ranging from 0 to 10 mg/L, there was a gradual increase in the frequency of plasmid conjugative transfer, peaking at 10 mg/L which was 7.93 times higher than that of the control group, significantly promoting horizontal transfer of ARGs. Further analysis revealed that the conjugative transfer system under tebuconazole stress exhibited strong ability to form biofilm, and the conjugative transfer frequency ratio of biofilm to planktonic bacteria varied with the growth cycle of biofilm. Additionally, scanning electron microscopy and flow cytometry demonstrated increased cell membrane permeability in both donor and recipient bacteria under tebuconazole stress, accompanied by upregulation of ompA gene expression controlling cell membrane permeability. Furthermore, enzyme activity assays indicated significant increases in CAT, SOD activity, and GSH content in recipient bacteria under tebuconazole stress. Moreover, expression levels of transmembrane transporter gene trfAp as well as genes involved in oxidative stress and SOS response were found to be correlated with the frequency of plasmid conjugative transfer.
Collapse
Affiliation(s)
- Yuanfei Gao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Yuchen Guo
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Luyu Guo
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Baihui Shi
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| |
Collapse
|
4
|
Xiao K, Abbt-Braun G, Pleitner R, Horn H. Effect of ciprofloxacin on the one-stage partial nitrification and anammox biofilm system: A multivariate analysis focusing on size-fractionated organic components. CHEMOSPHERE 2024; 355:141731. [PMID: 38494003 DOI: 10.1016/j.chemosphere.2024.141731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The impact of ciprofloxacin (CIP) in the partial nitrification and anammox biofilm system was investigated by multivariate analysis, focusing on size-fractionated organic components. The CIP dose of 10 μg/L did not inhibit the total nitrogen (TN) removal efficiency, even though the abundance of antibiotic resistant genes (ARGs) (i.e., qnrD, qnrB, qnrA, qnrS, and arcA) was elevated. However, a gradual higher CIP dosing up to 100 μg/L inhibited the TN removal efficiency, while the abundance of ARGs was still increased. Moreover, both the TN removal efficiency and the abundant ARGs were dwindled at 470 μg/L of CIP. As the CIP dose increased from 0 to 100 μg/L, the abundance of high molecular weight (MW) fractions (14,000 to 87,000 Da; 1000 to 14,000 Da) and humic/fulvic acid-like components in the soluble extracellular polymeric substances (HSS) decreased, with more increases of low MW (84-1000 Da; less than 84 Da) fractions and soluble microbial by-products in soluble extracellular polymeric substances (SMPS). Continuously increasing the CIP dose till 470 μg/L, an inverse trend of the changes of these organic components was noted, along with clear reductions of the microbial diversity and richness, and the abundance of key functional genes responsible for nitrogen removal. The predominance of functional gene amoA (related with ammonia oxidizing bacteria) was more significantly with more distribution of SMPS with relatively low MW and less distribution of HSS with relatively high MW, as well as polymer decomposing microorganisms such as Bryobacteraceae and the unclassified Saprospirales.
Collapse
Affiliation(s)
- Keke Xiao
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany; Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, 515063, Shantou, Guangdong, China.
| | - Gudrun Abbt-Braun
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany
| | - Robert Pleitner
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany
| | - Harald Horn
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany; DVGW Research Laboratories, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany
| |
Collapse
|
5
|
Boudehen YM, Tasrini Y, Aguilera-Correa JJ, Alcaraz M, Kremer L. Silencing essential gene expression in Mycobacterium abscessus during infection. Microbiol Spectr 2023; 11:e0283623. [PMID: 37831478 PMCID: PMC10714871 DOI: 10.1128/spectrum.02836-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Mycobacterium abscessus represents the most common rapidly growing mycobacterial pathogen in cystic fibrosis and is extremely difficult to eradicate. Essential genes are required for growth, often participate in pathogenesis, and encode valid drug targets for further chemotherapeutic developments. However, assessing the function of essential genes in M. abscessus remains challenging due to the limited spectrum of efficient genetic tools. Herein, we generated a Tet-OFF-based system allowing to knock down the expression of mmpL3, encoding the mycolic acid transporter in mycobacteria. Using this conditional mutant, we confirm the essentiality of mmpL3 in planktonic cultures, in biofilms, and during infection in zebrafish embryos. Thus, in this study, we developed a robust and reliable method to silence the expression of any M. abscessus gene during host infection.
Collapse
Affiliation(s)
- Yves-Marie Boudehen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Yara Tasrini
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - John Jairo Aguilera-Correa
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| |
Collapse
|
6
|
Mishra S, Cheng L, Lian Y. Response of biofilm-based systems for antibiotics removal from wastewater: Resource efficiency and process resiliency. CHEMOSPHERE 2023; 340:139878. [PMID: 37604340 DOI: 10.1016/j.chemosphere.2023.139878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Biofilm-based systems have efficient stability to cope-up influent shock loading with protective and abundant microbial assemblage, which are extensively exploited for biodegradation of recalcitrant antibiotics from wastewater. The system performance is subject to biofilm types, chemical composition, growth and thickness maintenance. The present study elaborates discussion on different type of biofilms and their formation mechanism involving extracellular polymeric substances secreted by microbes when exposed to antibiotics-laden wastewater. The biofilm models applied for estimation/prediction of biofilm-based systems performance are explored to classify the application feasibility. Further, the critical review of antibiotics removal efficiency, design and operation of different biofilm-based systems (e.g. rotating biological contactor, membrane biofilm bioreactor etc.) is performed. Extending the information on effect of various process parameters (e.g. hydraulic retention time, pH, biocarrier filling ratio etc.), the microbial community dynamics responsible of antibiotics biodegradation in biofilms, the technological problems, related prospective and key future research directions are demonstrated. The biofilm-based system with biocarriers filling ratio of ∼50-70% and predominantly enriched with bacterial species of phylum Proteobacteria protected under biofilm thickness of ∼1600 μm is effectively utilized for antibiotic biodegradation (>90%) when operated at DO concentration ≥3 mg/L. The C/N ratio ≥1 is best suitable condition to eliminate antibiotic pollution from biofilm-based systems. Considering the significance of biofilm-based systems, this review study could be beneficial for the researchers targeting to develop sustainable biofilm-based technologies with feasible regulatory strategies for treatment of mixed antibiotics-laden real wastewater.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Liu Cheng
- College of Environment, Hohai University, Nanjing, Jiangsu Province, 210098, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| |
Collapse
|
7
|
Messele YE, Werid GM, Petrovski K. Meta-Analysis on the Global Prevalence of Tetracycline Resistance in Escherichia coli Isolated from Beef Cattle. Vet Sci 2023; 10:479. [PMID: 37505883 PMCID: PMC10385540 DOI: 10.3390/vetsci10070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Antimicrobial resistance (AMR) is an emerging global concern, with the widespread use of antimicrobials in One Health contributing significantly to this phenomenon. Among various antimicrobials, tetracyclines are extensively used in the beef cattle industry, potentially contributing to the development of resistance in bacterial populations. This meta-analysis aimed to examine the association between tetracycline use in beef cattle and the development of tetracycline resistance in Escherichia coli isolates. A comprehensive search was conducted using multiple databases to gather relevant observational studies evaluating tetracycline use and tetracycline resistance in Escherichia coli isolates from beef cattle. The rate of tetracycline resistance from each study served as the effect measure and was pooled using a random-effects model, considering possible disparities among studies. The meta-analysis of 14 prospective longitudinal studies resulted in a 0.31 prevalence of tetracycline resistance in Escherichia coli in non-intervention (no exposure), contrasting numerically elevated resistance rates in the intervention (exposed) groups of 0.53 and 0.39 in those receiving tetracyclines via feed or systemically, respectively. Despite the observed numerical differences, no statistically significant differences existed between intervention and non-intervention groups, challenging the conventional belief that antimicrobial use in livestock inherently leads to increased AMR. The findings of this study underscore the need for additional research to fully understand the complex relationship between antimicrobial use and AMR development. A considerable degree of heterogeneity across studies, potentially driven by variations in study design and diverse presentation of results, indicates the intricate and complex nature of AMR development. Further research with standardized methodologies might help elucidate the relationship between tetracycline use and resistance in Escherichia coli isolated from beef cattle.
Collapse
Affiliation(s)
- Yohannes E Messele
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Gebremeskel Mamu Werid
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Kiro Petrovski
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| |
Collapse
|