1
|
Xu F, Guo C, Wang Y, Zhu Y. Outbreak of Haff disease caused by crayfish in China: a systematic review. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:195. [PMID: 39587705 PMCID: PMC11590225 DOI: 10.1186/s41043-024-00682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Haff disease is a condition that has emerged in China in recent years, primarily associated with the consumption of crayfish. Despite its increasing incidence, the exact cause of Haff disease remains unknown, prompting further investigation into its potential triggers and risk factors. The purpose of this system review is to investigate and summarize the current understanding of Haff disease and provide insights into the etiology and pathogenesis of Haff disease by collecting and analyzing data from a large number of patients. METHOD Systematic searches were conducted in PubMed, CNKI, and Wanfang Databases to investigate and summarize Haff disease by crayfish consumption in China over recent years. The search included observational studies published up to May 1, 2024. RESULT This review collected data from 1437 patients and conducted a comprehensive analysis of symptoms. In-depth examinations of patient symptoms revealed that nearly all patients exhibited abnormally elevated serum creatine kinase levels and muscular pain, while some also experienced changes in urine color, abdominal discomfort, and chest pain. Risk factors associated with Haff disease from crayfish consumption included high crayfish consumption, alcohol use, the consumption of specific crayfish organs such as the head, liver, and pancreas, and the consumption of wild crayfish. CONCLUSION Haff disease is indeed related to the consumption of crayfish, which may be due to the presence of an unknown heat stable toxin in crayfish. During the research process, many risk factors were identified, and it is recommended that people who consume crayfish pay attention to these risk factors and take appropriate preventive measures to minimize the risk of illness.
Collapse
Affiliation(s)
- Feiyang Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Caihui Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yang Wang
- Maanshan Center for Disease Control and Prevention, Maanshan, 243000, China
| | - Yi Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
2
|
Mai Z, Xiong X, Li X, Hu H, Wu C. Antibiotics in the rice-crayfish rotation pattern: Occurrence, prioritization, and resistance risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172540. [PMID: 38636854 DOI: 10.1016/j.scitotenv.2024.172540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/23/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Antibiotics are extensively utilized in aquaculture to mitigate diseases and augment the productivity of aquatic commodities. However, to date, there have been no reports on the presence and associated risks of antibiotics in the emergent rice-crayfish rotation (RCR) system. This study investigated the occurrence, temporal dynamics, prioritization, sources, and potential for resistance development of 15 antibiotics within the RCR ecosystem. The findings revealed that during the crayfish breeding and rice planting periods, florfenicol (FFC) predominated in the RCR's surface water, with peak and average concentrations of 1219.70 ng/L and 57.43 ng/L, and 1280.70 ng/L and 52.60 ng/L, respectively. Meanwhile, enrofloxacin (ENX) was the primary antibiotic detected in RCR soil and its maximum and average concentrations were 624.73 ng/L and 69.02 ng/L in the crayfish breeding period, and 871.27 ng/L and 45.89 ng/L in the rice planting period. Throughout the adjustment period, antibiotic concentrations remained relatively stable in both phases. Notably, antibiotic levels in surface water and soil escalated during the crayfish breeding period and subsided during the rice planting period, with these fluctuations predominantly influenced by FFC and ENX. Source analysis indicated that the antibiotics in RCR predominantly originated from aquaculture activities, supplemented by water exchange processes. Utilizing the entropy utility function and a resistance development model, FFC, clarithromycin (CLR), and roxithromycin (ROX) in surface water, along with ENX, CLR, and ROX in soil, were identified as priority antibiotics. FFC, ENX, and ROX exhibited a medium risk for resistance development. Consequently, this study underscores the necessity to intensify antibiotic usage control during the crayfish breeding period in the RCR system to mitigate environmental risks.
Collapse
Affiliation(s)
- Zhan Mai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiong Xiong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xin Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hongjuan Hu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Li Y, Zhou X, Guo W, Fu Y, Ruan G, Fang L, Wang Q. Effects of lead contamination on histology, antioxidant and intestinal microbiota responses in freshwater crayfish, Procambarus clarkii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106768. [PMID: 38041968 DOI: 10.1016/j.aquatox.2023.106768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 11/12/2023] [Indexed: 12/04/2023]
Abstract
The red swamp crayfish (Procambarus clarkii) is an important farming species in China and there is a high degree of overlap between the main crayfish production areas and areas contaminated with the heavy metal lead (Pb), thus putting crayfish farming at potential risk of Pb contamination. To assess the toxic effects of Pb on crayfish, in this study they were exposed to different concentrations of Pb (0, 0.1, 1, 10, 50 mg/L) for 72 h, and 0.1 mg/L represents the level of Pb in the contaminated water. Histomorphology and activities of antioxidant or immune-related enzymes suggest that the damage of Pb to the hepatopancreas and intestine was dose- and time-dependent, with the intestine being more sensitive to Pb than the hepatopancreas. Notably, after a short period (24 h) of stress at low concentrations (0.1 mg/L) of Pb, the malondialdehyde (MDA) content and antioxidant enzymes such as catalase (CAT) and glutathione peroxidase (GSH-Px) in the intestine of crayfish showed significant changes, indicating that low concentrations of Pb were also highly detrimental to crayfish. High-throughput sequencing of the intestinal microbial community indicated that Pb exposure led to a disturbance in the relative abundance of intestinal bacteria, increasing the abundance of pathogenic bacteria (Bosea, Cloacibacterium, Legionella spp.) and decreasing the abundance of potentially beneficial bacteria (Chitinibacter, Chitinilyticum, Paracoccus, Microbacterium, Demequina, and Acinetobacter spp.). In conclusion, Pb damages the hepatopancreas and intestinal barrier of crayfish, leading to the destruction of their anti-stress ability and immune response, and at the same time disrupts the homeostasis of intestinal microbes, resulting in adverse effects on the gut. This study contributed to the assessment of the ecotoxicity of the heavy metal Pb to the crustacean aquatic animals.
Collapse
Affiliation(s)
- Yulong Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China
| | - Xingwang Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Wei Guo
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650504, China
| | - Yunyin Fu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China
| | - Guoliang Ruan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China
| | - Liu Fang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China.
| | - Qian Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China.
| |
Collapse
|
4
|
Zhang L, Song Z, Zhou Y, Zhong S, Yu Y, Liu T, Gao X, Li L, Kong C, Wang X, He L, Gan J. The Accumulation of Toxic Elements (Pb, Hg, Cd, As, and Cu) in Red Swamp Crayfish ( Procambarus clarkii) in Qianjiang and the Associated Risks to Human Health. TOXICS 2023; 11:635. [PMID: 37505600 PMCID: PMC10384343 DOI: 10.3390/toxics11070635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Due to rapidly expanding crayfish consumption worldwide, the food safety of red swamp crayfish (Procambarus clarkii) is of great concern. China is the largest consumer and producer of crayfish globally. As of yet, it is unknown whether the main crayfish production cities in China are within safe levels of toxic heavy metals and metalloids. For 16 consecutive years, Qianjiang city ranked first in China in processing export volumes of red swamp crayfish. This study presents a comprehensive analysis of the enrichment levels and associated health risks of the species in Qianjiang. In our research, samples of four crayfish tissues, including the head, hepatopancreas, gills, and muscles, were collected from 38 sampling sites distributed in Qianjiang to evaluate the concentration levels of five heavy metals (Pb, Hg, Cd, As, and Cu). The concentration levels of all five metals in muscle did not surpass the national standard. Furthermore, eight significant correlations have been found. For further in-depth assess risk of crayfish in Qianjiang, estimated daily intake (EDI), target hazard quotient (THQ), carcinogenic risk (CR), and estimated maximum allowable consumption rates (CRmm) were evaluated in the abdomen muscle and hepatopancreas. The THQ values for each metal were found to be less than 1, while the CR values were below 10-6. Additionally, the CRmm for adults was determined to be 17.2 meals per month. These findings, based on the analysis of five metallic elements included in this study, suggest that the consumption of crayfish abdomen muscle in Qianjiang does not pose any significant health risks. However, it is noteworthy that certain regions exhibit elevated levels of arsenic in the hepatopancreas, surpassing the national standard, thereby rendering them unsuitable for excessive consumption. In general, the findings can be used to provide guidance for safe dietary practices in China.
Collapse
Affiliation(s)
- Lang Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ziwei Song
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Department of Genetics, Wuhan University, Wuhan 430071, China
| | - Yuntao Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Shan Zhong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Department of Genetics, Wuhan University, Wuhan 430071, China
| | - Yali Yu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ting Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaoping Gao
- Jiujiang Institute of Agricultural Sciences, Jiujiang 332005, China
| | - Lekang Li
- Jiujiang Institute of Agricultural Sciences, Jiujiang 332005, China
| | - Chiping Kong
- Jiujiang Institute of Agricultural Sciences, Jiujiang 332005, China
| | - Xinna Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Li He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Wuhan 430223, China
| | - Jinhua Gan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Wuhan 430223, China
| |
Collapse
|
5
|
Lin W, Wu J, Luo H, Liu X, Cao B, Hu F, Liu F, Yang J, Yang P. Sub-chronic ammonia exposure induces hepatopancreatic damage, oxidative stress, and immune dysfunction in red swamp crayfish (Procambarus clarkii). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114724. [PMID: 36871356 DOI: 10.1016/j.ecoenv.2023.114724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Ammonia, as one of the primary water pollutants in aquaculture, has been shown to induce a wide range of ecotoxicological effects on aquatic animals. In order to investigate the antioxidant and innate immune responses in crustaceans disrupted by ammonia, red swamp crayfish (Procambarus clarkii) were exposed to 0, 15, 30, and 50 mg/L total ammonia nitrogen for 30 d, the alterations of antioxidant responses as well as innate immunity were studied. The results showed that the severity of hepatopancreatic injury were aggravated by the increasing ammonia levels, which were mainly characterized by tubule lumen dilatation and vacuolization. The swollen mitochondria and disappeared mitochondria ridges suggested that oxidative stress induced by ammonia targets the mitochondria. Concurrently, enhanced MDA levels, and decreased GSH levels as well as the decreased transcription and activity of antioxidant enzymes, including SOD, CAT, and GPx were noticed, which suggested that high concentrations of ammonia exposure induce oxidative stress in P. clarkii. Furthermore, a significant decrease of the hemolymph ACP, AKP, and PO along with the significant downregulation of immune-related genes (ppo, hsp70, hsp90, alf1, ctl) jointly indicated that ammonia stress inhibited the innate immune function. Our findings demonstrated that sub-chronic ammonia stress induced hepatopancreatic injury and exert suppressive effects on the antioxidant capacity as well as innate immunity of P. clarkii. Our results provide a fundamental basis for the deleterious effects of ammonia stress on aquatic crustaceans.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Changde 415000, China
| | - Jingyi Wu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Huimin Luo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Xiangli Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Beibei Cao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Fen Hu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Fang Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Jifeng Yang
- College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde 415000, China.
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Changde 415000, China.
| |
Collapse
|