1
|
Nurlybayeva A, Yermekova A, Taubayeva R, Sarova N, Sapiyeva A, Mateeva S, Matniyazova G, Bulekbayeva K, Jetpisbayeva G, Tamabekova M. Modern Methods of Obtaining Synthetic Oil from Unconventional Hydrocarbon Raw Materials: Technologies, Catalysts, and Development Prospects. Polymers (Basel) 2025; 17:776. [PMID: 40292671 PMCID: PMC11944817 DOI: 10.3390/polym17060776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/27/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
This article considers modern approaches to obtaining synthetic oil from unconventional hydrocarbon feedstocks, including plastic waste, tires, biomass, coal, and extra-heavy oil. Particular attention is paid to multi-stage technologies, such as pyrolysis, catalytic depolymerization, gasification followed by Fischer-Tropsch synthesis, and hydrocracking of heavy residues. The important role of catalysts in increasing the selectivity and economic efficiency of processes is noted: nanostructured, bifunctional, and pollution-resistant systems are increasingly used. Economic factors influencing the competitiveness of this industry are considered, including the volatility of prices for traditional oil, government support measures, and the development of waste logistics infrastructure. It is emphasized that the strengthening of the position of synthetic oil is associated with the growth of environmental requirements stimulating the recycling of plastics, tires, and biomass; at the same time, compliance with high environmental standards and transparency of emission control play a critical role in the social aspects of projects. In addition to improving the environmental situation, the development of synthetic oil contributes to the creation of jobs, the resolution of problems of shortage of classical oil fields, and the increase of energy security. It is concluded that further improvement of technologies and integration into industrial clusters can turn this sphere into a significant component of the future energy sector.
Collapse
Affiliation(s)
- Aisha Nurlybayeva
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan; (A.N.); (S.M.); (K.B.); (G.J.)
| | - Ainura Yermekova
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan; (A.N.); (S.M.); (K.B.); (G.J.)
| | - Raushan Taubayeva
- Department of Chemistry, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan;
| | - Nurbanu Sarova
- Department of Chemistry, Kazakh National Medical University named after S.D. Asfendiyarov, Almaty 050012, Kazakhstan;
| | - Ardak Sapiyeva
- Department of General and Biological Chemistry, Astana Medical University, Astana 010000, Kazakhstan
| | - Sulushash Mateeva
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan; (A.N.); (S.M.); (K.B.); (G.J.)
| | - Gulsim Matniyazova
- Higher School of Natural Sciences, Astana International University, Astana 010000, Kazakhstan;
| | - Kamila Bulekbayeva
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan; (A.N.); (S.M.); (K.B.); (G.J.)
| | - Gulim Jetpisbayeva
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz University, Taraz 080000, Kazakhstan; (A.N.); (S.M.); (K.B.); (G.J.)
| | | |
Collapse
|
2
|
Krbečková V, Plachá D. Raw biowaste conversion to high-value compounds for food, cosmetic and pharmaceutical industries. ENVIRONMENTAL RESEARCH 2024; 263:120134. [PMID: 39389193 DOI: 10.1016/j.envres.2024.120134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Biowaste valorisation into high-value compounds is one of the main challenges of green chemistry, as chemicals produced from biological sources are identified as key substances in the development of a low-carbon and circular bioeconomy in connection with the transition from fossil to renewable feedstocks. The review summarizes the production of high-value products such as glucose-based chemicals, phenolic compounds and volatile-fatty acids prepared from biomass waste. Biowaste pretreatment methods such as milling, filtration and extraction followed by current non-catalytic methods such as microwave or ultrasound extraction and catalytic methods for the production value-added compounds in the presence of various catalyst types in conventional, nano or enzyme form are listed with a focus on value-added chemicals applied in the food, cosmetic and pharmaceutical industries. The economic feasibility, technical aspects and concept of the biorefinery are briefly mentioned, emphasizing the necessity of life cycle assessment for each bioproduct and technological process. Finally, it provides a future perspective and makes recommendations for potential research strategies, recognizing the importance of utilizing biomass waste for the production of useful compounds as an attractive and environmentally friendly approach whose development should be encouraged. The utilization of biowaste for high-value chemicals production shows high potential, however, there are still many challenges to be resolved throughout the entire production chain, reflecting technological, economic, ecological, sociological and long-term issues.
Collapse
Affiliation(s)
- Veronika Krbečková
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Poruba, Czech Republic; Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Daniela Plachá
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Poruba, Czech Republic.
| |
Collapse
|
3
|
Mkpuma VO, Moheimani NR, Ennaceri H. Effect of light intensity on Chlorella sp. biofilm growth on anaerobically digested food effluents (ADFE). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123015. [PMID: 39471596 DOI: 10.1016/j.jenvman.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Optimizing light conditions in any culture design for effluent treatment is crucial for maximizing microalgae growth and nutrient uptake. We investigated the impact of low (53 ± 1 μmol m-2 s-1), medium (208 ± 12 μmol m-2 s-1), and high (518 ± 22 μmol m-2 s-1) light intensities on the diffused biofilm-based growth of Chlorella sp. for treating anaerobically digested food effluent (ADFE). The alga grew well across all treatments, irrespective of light intensity. However, biomass yields, and productivity positively correlated with light intensity, with the highest biomass yield (120 g m-2) and productivity (11.6 g m-2 d-1) occurring at high light intensity. Notably, specific growth rates peaked uniformly on day 2 across all treatments, indicating an initial surge in growth. A relatively stable photosynthetic performance occurred under medium light treatment, while stress evidence was noticed particularly after day 4 at high and low light treatments, with higher magnitude seen under low light treatments. Total ammonia nitrogen (TAN) and phosphate removal efficiencies increased with light intensities, reaching 100 % removal at high light after 10 days. Intriguingly, there was a notable enhancement in chemical oxygen demand (COD) removal under low light conditions, being 2.9- and 1.64-fold higher compared to medium and high light intensities, respectively. Despite the superior performance of Chlorella sp. biofilm under high-light conditions in biomass yield and uptake of nutrients, the low-light treatment also achieved remarkable results, indicating that this biofilm design offers enhanced exposure to light. Therefore, this biofilm configuration presents an enticing opportunity for treating ADFE at lower light intensities, potentially minimizing energy consumption while maximizing profitability.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy, and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy, and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia.
| |
Collapse
|
4
|
Nazloo EK, Danesh M, Sarrafzadeh MH, Moheimani NR, Ennaceri H. Biomass and hydrocarbon production from Botryococcus braunii: A review focusing on cultivation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171734. [PMID: 38508258 DOI: 10.1016/j.scitotenv.2024.171734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Botryococcus braunii has garnered significant attention in recent years due to its ability to produce high amounts of renewable hydrocarbons through photosynthesis. As the world shifts towards a greener future and seeks alternative sources of energy, the cultivation of B. braunii and the extraction of its hydrocarbons can potentially provide a viable solution. However, the development of a sustainable and cost-effective process for cultivating B. braunii is not without challenges. Compared to other microalgae, B. braunii grows very slowly, making it time-consuming and expensive to produce biomass. In response to these challenges, several efforts have been put into optimizing Botryococcus braunii cultivation systems to increase biomass growth and hydrocarbon production efficiency. This review presents a comparative analysis of different Botryococcus braunii cultivation systems, and the factors affecting the productivity of biomass and hydrocarbon in Botryococcus braunii are critically discussed. Attached microalgal growth offers several advantages that hold significant potential for enhancing the economic viability of microalgal fuels. Here, we propose that employing attached growth cultivation, coupled with the milking technique for hydrocarbon extraction, represents an efficient approach for generating renewable fuels from B. braunii. Nevertheless, further research is needed to ascertain the viability of large-scale implementation.
Collapse
Affiliation(s)
- Ehsan Khorshidi Nazloo
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Moslem Danesh
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Petroleum Drilling and Refining, Kurdistan Technical Institute Sulaimaniya, Iraq; Department of Biomedical Engineering, Qaiwan International University, Sulaimaniya, Iraq
| | - Mohammad-Hossein Sarrafzadeh
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Navid Reza Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia.
| |
Collapse
|
5
|
Mkpuma VO, Moheimani NR, Ennaceri H. Biofilm and suspension-based cultivation of microalgae to treat anaerobic digestate food effluent (ADFE). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171320. [PMID: 38458453 DOI: 10.1016/j.scitotenv.2024.171320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Anaerobic digestion of organic waste produces effluent (ADE) that requires further treatment. Biofilm-based microalgal cultivation is a favoured approach to ADE treatment. This study compared Chlorella sp. MUR 268 and Scenedesmus sp. MUR 269 in biofilm and suspension cultures to treat anaerobic digestate food effluent (ADFE). Chlorella sp. MUR 268 biofilm had significantly higher biomass (50.38 g m-2) than Scenedesmus sp. biofilm (9.39 g m-2). Conversely, Scenedesmus sp. yielded 1.5 times more biomass (1.2 g L-1) than Chlorella sp. in suspension. Chlorella sp. biofilm had 49.3 % higher areal productivity than suspension, while Scenedesmus sp. showed 87.3 % higher areal growth in suspension. Chlorella sp. MUR 268 and Scenedesmus sp. MUR 269 significantly removed nutrients in ADFE. In suspension, COD, ammoniacal nitrogen, and phosphate were reduced to 94.9, 5.2, and 5.98 mg L-1 for Chlorella sp. MUR 268, and 245, 2.89, and 3.22 mg L-1 for Scenedesmus sp. MUR 269, respectively. In biofilm, Chlorella sp. MUR 268 achieved reductions to 149.9, 1.16, and 3.57 mg L-1, while Scenedesmus sp. MUR 269 achieved 100.2, 6.9 and 2.07 mg L-1. Most of these values are below the recommended effluent discharge standard, highlighting the efficacy of this system in ADFE treatment. Biofilm cultures fixed 68-81 % of removed nitrogen in biomass, while in suspension, only 55-71 % ended in the biomass. Chlorella sp. MUR 268 biofilm fixed 88 % of removed phosphorus, while Scenedesmus sp. MUR 269 suspension fixed more phosphorus (55 %) than the biofilm counterpart (34 %). This biofilm design offers advantages like simplified, cost-effective operation, easy biomass recovery, and reduced water usage.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia.
| |
Collapse
|
6
|
Sitepu EK, Sinaga RPA, Sitepu BEN, Santoso A, Susilo B, Ginting B, Perangin-angin S, Tarigan JB. Calcined Biowaste Durian Peel as a Heterogeneous Catalyst for Room-Temperature Biodiesel Production Using a Homogenizer Device. ACS OMEGA 2024; 9:15232-15238. [PMID: 38585132 PMCID: PMC10993264 DOI: 10.1021/acsomega.3c09642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
Calcined biowaste durian peel (BDP) contains 86% potassium element as the main compound and has successfully catalyzed the transesterification of palm oil to biodiesel at room temperature. The effect of catalyst weight, molar ratio of palm oil to methanol, reaction time, and rotational speed of the homogenizer device was investigated on biodiesel conversion and yield. The highest biodiesel conversion of 97.4 ± 0.3% was achieved using the following reaction conditions: a catalyst weight of 5 wt %, a molar ratio of palm oil to methanol of 1:15, a reaction time of 10 min, and a rotational speed of 6000 rpm. Unfortunately, calcined BDP could not hold its catalytic activity in the reusability study. The biodiesel conversion was decreased in the second cycle due to the decrease of both catalyst weight and concentration of potassium ions after the first cycle. However, the calcined BDP paired with a homogenizer device could produce biodiesel in a short reaction time and at room temperature.
Collapse
Affiliation(s)
- Eko. K. Sitepu
- Department
of Chemistry, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Reni P. A. Sinaga
- Department
of Chemistry, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Bryan E. N. Sitepu
- Department
of Chemistry, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Aman Santoso
- Department
of Chemistry, Universitas Negeri Malang, Malang 65145, Indonesia
| | - Bambang Susilo
- Department
of Agricultural Engineering, Brawijaya University, Malang 65145, Indonesia
| | - Binawati Ginting
- Department
of Chemistry, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | | | | |
Collapse
|
7
|
Singh Y, Singh NK, Sharma A, Patil PP, Badruddin IA, Kamangar S. Biodiesel production and exploring properties of Datura stramonium L. oil with its optimization using combined approaches-Taguchi, grey relational analysis, and response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23802-23821. [PMID: 38430436 DOI: 10.1007/s11356-024-32665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Biodiesel production through the synthesis of Datura stramonium L. oil is studied to explore the most efficient approaches to suggest an alternate feedstock for biodiesel production. The main objective of this work is to optimize the process variables of biodiesel synthesis by using some statistical approach (Taguchi method, grey relational analysis (GRA), and response surface methodology (RSM) analyzing three parameters, i.e., alcohol-to-oil molar ratio, catalyst (NaOH) concentration, and process temperature for achieving maximum biodiesel derived from Datura stramonium L. oil. The transesterification process is applied by using an ultrasonic-assisted technique. Grey relational analysis (GRA) was successfully applied with the Taguchi method resulting in the optimum combination of A2B1C1. Based on the findings, the best operating conditions for transesterifying are attained with the RSM approach consisting of a 5.697:1 molar ratio (level 2), 0.3 (wt.%) NaOH concentration (level 1), and 70 °C process temperature (level 1). With a value of 87.02%, these ideal operating conditions produce the maximum yield as compared to grey relational analysis (GRA) yields 83.99%. The obtained results have been verified through the characterization of oil and biodiesel as well. Also, the fuel qualities of DSL biodiesel were identified and assessed. DSL oil was found 137.6 degrees of unsaturation during fatty acid profile analysis. DSL biodiesel was found the best kinematic viscosity (4.2 mm2/s) and acid value (0.49) when compared to Karanja and palm biodiesel. D. stramonium L. was recognized as a suitable species for biodiesel feedstock according to the findings.
Collapse
Affiliation(s)
- Yashvir Singh
- Department of Mechanical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India.
| | - Nishant Kumar Singh
- Department of Mechanical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India
| | - Abhishek Sharma
- Department of Mechanical Engineering, Loknayak Jai Prakash Institute of Technology, Chapra, Bihar, India
| | - Pravin P Patil
- Department of Mechanical Engineering, Graphic Era Deemed to be University, Dehradun, Uttarkhand, India
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, P.O. Box 394, Abha, 61421, Saudi Arabia
| | - Sarfaraz Kamangar
- Mechanical Engineering Department, College of Engineering, King Khalid University, P.O. Box 394, Abha, 61421, Saudi Arabia
| |
Collapse
|
8
|
Mkpuma VO, Moheimani NR, Ennaceri H. Biofilm cultivation of chlorella species. MUR 269 to treat anaerobic digestate food effluent (ADFE): Total ammonia nitrogen (TAN) concentrations effect. CHEMOSPHERE 2024; 354:141688. [PMID: 38484996 DOI: 10.1016/j.chemosphere.2024.141688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Microalgal-based treatment of anaerobic digestate food effluent (ADFE) has been found to be efficient and effective. However, turbidity and high total ammonia nitrogen (TAN)) content of ADFE is a major setback, requiring significant dilution. Although the possibility of growing microalgae in a high-strength ADFE with minimal dilution has been demonstrated in suspension cultures, such effluents remain highly turbid and affect the light path in suspension cultures. Here, the feasibility of growing Chlorella sp.MUR 269 in biofilm to treat ADFE with high TAN concentrations was investigated. Six different TAN concentrations in ADFE were evaluated for their effects on biofilm growth and nutrient removal by Chlorella sp. MUR 269 using the perfused biofilm technique. Biomass yields and productivities of this alga at various TAN concentrations (mg N NH3 L-1) were 55a (108 g m-2 and 9.80 g m-2 d-1)>100b > 200c = 300c = 500c > 1000d. Growth was inhibited, resulting in a 28% reduction in yield of Chlorella biofilm when this alga was grown at 1000 mg N NH3 L-1. A survey of the photosynthetic parameters reveals evidence of stress occurring in the following sequence: 55 < 100<200 < 300<1000. A significant nutrient removal was observed across various TAN concentrations. The removal pattern also followed the concentration gradients except COD, where the highest removal occurred at 500 mg N NH3 L-1. Higher removal rates were seen at higher nutrient concentrations and declined gradually over time. In general, our results indicated that the perfused biofilm strategy is efficient, minimizes water consumption, offers easy biomass harvesting, and better exposure to light. Therefore, it can be suitable for treating turbid and concentrated effluent with minimal treatment to reduce the TAN concentration.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia.
| |
Collapse
|
9
|
Huang J, Xie X, Zheng W, Xu L, Yan J, Wu Y, Yang M, Yan Y. In silico design of multipoint mutants for enhanced performance of Thermomyces lanuginosus lipase for efficient biodiesel production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:33. [PMID: 38402206 PMCID: PMC10894483 DOI: 10.1186/s13068-024-02478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Biodiesel, an emerging sustainable and renewable clean energy, has garnered considerable attention as an alternative to fossil fuels. Although lipases are promising catalysts for biodiesel production, their efficiency in industrial-scale application still requires improvement. RESULTS In this study, a novel strategy for multi-site mutagenesis in the binding pocket was developed via FuncLib (for mutant enzyme design) and Rosetta Cartesian_ddg (for free energy calculation) to improve the reaction rate and yield of lipase-catalyzed biodiesel production. Thermomyces lanuginosus lipase (TLL) with high activity and thermostability was obtained using the Pichia pastoris expression system. The specific activities of the mutants M11 and M21 (each with 5 and 4 mutations) were 1.50- and 3.10-fold higher, respectively, than those of the wild-type (wt-TLL). Their corresponding melting temperature profiles increased by 10.53 and 6.01 °C, [Formula: see text] (the temperature at which the activity is reduced to 50% after 15 min incubation) increased from 60.88 to 68.46 °C and 66.30 °C, and the optimum temperatures shifted from 45 to 50 °C. After incubation in 60% methanol for 1 h, the mutants M11 and M21 retained more than 60% activity, and 45% higher activity than that of wt-TLL. Molecular dynamics simulations indicated that the increase in thermostability could be explained by reduced atomic fluctuation, and the improved catalytic properties were attributed to a reduced binding free energy and newly formed hydrophobic interaction. Yields of biodiesel production catalyzed by mutants M11 and M21 for 48 h at an elevated temperature (50 °C) were 94.03% and 98.56%, respectively, markedly higher than that of the wt-TLL (88.56%) at its optimal temperature (45 °C) by transesterification of soybean oil. CONCLUSIONS An integrating strategy was first adopted to realize the co-evolution of catalytic efficiency and thermostability of lipase. Two promising mutants M11 and M21 with excellent properties exhibited great potential for practical applications for in biodiesel production.
Collapse
Affiliation(s)
- Jinsha Huang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoman Xie
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wanlin Zheng
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Xu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Jinyong Yan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ying Wu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Min Yang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
10
|
Ennaceri H, Mkpuma VO, Moheimani NR. Nano-clay modified membranes: A promising green strategy for microalgal antifouling filtration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166479. [PMID: 37611702 DOI: 10.1016/j.scitotenv.2023.166479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Membrane fouling is a major challenge which limits the sustainable application of membrane filtration-based microalgal harvesting at industrial level. Membrane fouling leads to increased operational and maintenance costs and represents a major obstacle to microalgal downstream processing. Nano-clays are promising naturally occurring nanoparticles in membrane fabrication due to their low-cost, facile preparation, and their superior properties in terms of surface hydrophilicity, mechanical stability, and resistance against chemicals. The membrane surface modification using nano-clays is a sustainable promising approach to improve membranes mechanical properties and their fouling resistance. However, the positive effects of nano-clay particles on membrane fouling are often limited by aggregation and poor adhesion to the base polymeric matrix. This review surveys the recent efforts to achieve anti-fouling behavior using membrane surface modification with nano-clay fillers. Further, strategies to achieve a better incorporation of nano-clay in the polymer matrix of the membrane are summarised, and the factors that govern the membrane fouling, stability, adhesion, agglomeration and leaching are discussed in depth.
Collapse
Affiliation(s)
- Houda Ennaceri
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Water Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia.
| | - Victor Okorie Mkpuma
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Water Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| |
Collapse
|
11
|
Mkpuma VO, Moheimani NR, Ennaceri H. Commercial paper as a promising carrier for biofilm cultivation of Chlorella sp. for the treatment of anaerobic digestate food effluent (ADFE): Effect on the photosynthetic efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165439. [PMID: 37437632 DOI: 10.1016/j.scitotenv.2023.165439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Microalgal technology is still economically unattractive due to the high cost associated with microalgal cultivation and biomass recovery from conventional suspension cultures. Biofilm-based cultivation is a promising alternative for higher biomass yield and cheap/easy biomass harvesting opportunities. Additionally, using anaerobic digestate food effluent (ADFE) as a nutrient source reduces the cultivation cost and achieves ADFE treatment as an added value. However, the search for locally available, inexpensive, and efficient support materials is still open to research. This study evaluates the potential of commercially available, low-cost papers as support material for biofilm cultivation of Chlorella sp. and treatment of ADFE. Among the four papers screened for microalgal attachment, quill board paper performed better in higher biomass yield and stability throughout the study period. The attached growth study was done in a modular food container vessel, using anaerobic digestate food effluent (ADFE) as a nutrient source and a basal medium as a control. The microalgae grew well on the support material with higher biomass yield and productivity of 108.64 g(DW) m-2 and 9.96 g (DW) m-2 d-1, respectively, in the ADFE medium compared with 85.87 g (DW) m-2 and 4.99 g (DW) m-2 d-1, respectively in the basal medium. Chlorophyll, a fluorescence (ChlF) probe, showed that cell density in the biofilm significantly changes the photosynthetic apparatus of the algae, with evidence of stress observed as the culture progressed. Also, efficient nutrient removal from the ADFE medium was achieved in the 100 %, 85 %, and 40.2 % ratios for ammoniacal nitrogen, phosphate, and chemical oxygen demand (COD). Therefore, using quill board paper as carrier material for microalgal cultivation offers promising advantages, including high biomass production, easy biomass harvesting (by scrapping or rolling the biomass with the paper), and efficient effluent treatment.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia.
| |
Collapse
|
12
|
Supeno M, Sihotang JP, Panjaitan YV, Damanik DSY, Tarigan JB, Sitepu EK. Room temperature esterification of high-free fatty acid feedstock into biodiesel. RSC Adv 2023; 13:33107-33113. [PMID: 37954417 PMCID: PMC10633858 DOI: 10.1039/d3ra06912e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023] Open
Abstract
The esterification of a high-free fatty acid feedstock to biodiesel is often performed in high-temperature conditions using either homogeneous or heterogeneous acid catalysts. Thus, this study attempts to esterify oleic acid to biodiesel in room temperature conditions using sulphuric acid as a catalyst and a homogenizer device. The influences of process parameters including the molar ratio of oleic acid to methanol, catalyst concentration and rotational speed on biodiesel conversion were determined in different reaction times. The maximum conversion of 96.1 ± 0.4% was obtained in the presence of a molar ratio of 1 : 12, catalyst concentration of 0.7 mol L-1, a rotational speed of 4000 rpm and a reaction time of 30 minutes. The catalytic reusability test showed that the addition of fresh methanol is required to maintain the catalytic activity. However, the homogenizer-intensify esterification of oleic acid to biodiesel showed better performance than other methods as the reaction could conducted at room temperature and at a short reaction time. The predicted biodiesel properties meet the international standard except for oxidative stability. However, the flow properties revealed that the biodiesel can be used in winter season.
Collapse
Affiliation(s)
- Minto Supeno
- Department of Chemistry, Universitas Sumatera Utara Medan 20155 Indonesia
| | - John P Sihotang
- Department of Chemistry, Universitas Sumatera Utara Medan 20155 Indonesia
| | | | - Dian S Y Damanik
- Department of Chemistry, Universitas Sumatera Utara Medan 20155 Indonesia
| | - Juliati Br Tarigan
- Department of Chemistry, Universitas Sumatera Utara Medan 20155 Indonesia
| | - Eko K Sitepu
- Department of Chemistry, Universitas Sumatera Utara Medan 20155 Indonesia
| |
Collapse
|
13
|
Elhussieny NI, El-Refai HA, Mohamed SS, Shetaia YM, Amin HA, Klöck G. Rhizopus stolonifer biomass catalytic transesterification capability: optimization of cultivation conditions. Microb Cell Fact 2023; 22:154. [PMID: 37580714 PMCID: PMC10424374 DOI: 10.1186/s12934-023-02141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/01/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Using fungal biomass for biocatalysis is a potential solution for the expensive cost of the use o enzymes. Production of fungal biomass with effective activity requires optimizing the cultivation conditions. RESULTS Rhizopus stolonifer biomass was optimized for transesterification and hydrolysis of waste frying oil (WFO). Growth and biomass lipolytic activities of R. stolonifer improved under shaking conditions compared to static conditions, and 200 rpm was optimum. As biomass lipase and transesterification activities inducer, olive oil was superior to soybean, rapeseed, and waste frying oils. Biomass produced in culture media containing fishmeal as an N-source feedstock had higher lipolytic capabilities than corn-steep liquor and urea. Plackett Burman screening of 9 factors showed that pH (5-9), fishmeal (0.25-1.7%, w/v), and KH2PO4 (0.1-0.9%, w/v) were significant factors with the highest main effect estimates 11.46, 10.42, 14.90, respectively. These factors were selected for response surface methodology (RSM) optimization using central composite design (CCD). CCD models for growth, biomass lipase activity, and transesterification capability were significant. The optimum conditions for growth and lipid modification catalytic activities were pH 7.4, fishmeal (2.62%, w/v), and KH2PO4 (2.99%, w/v). CONCLUSION Optimized culture conditions improved the whole cell transesterification capability of Rhizopus stolonifer biomass in terms of fatty acid methyl ester (FAME) concentration by 67.65% to a final FAME concentration of 85.5%, w/w.
Collapse
Affiliation(s)
- Nadeem I Elhussieny
- Department of Life Science and Chemistry, Constructor University, Campus Ring 1, 28759, Bremen, Germany.
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo, 12622, Egypt.
- Institute of Environmental Biology and Biotechnology, University of Applied Sciences, 28199, Bremen, Germany.
| | - Heba A El-Refai
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo, 12622, Egypt
| | - Sayeda S Mohamed
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo, 12622, Egypt
| | - Yousseria M Shetaia
- Department of Microbiology, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Hala A Amin
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo, 12622, Egypt
| | - Gerd Klöck
- Institute of Environmental Biology and Biotechnology, University of Applied Sciences, 28199, Bremen, Germany
| |
Collapse
|
14
|
Co-Immobilization of Lipases with Different Specificities for Efficient and Recyclable Biodiesel Production from Waste Oils: Optimization Using Response Surface Methodology. Int J Mol Sci 2023; 24:ijms24054726. [PMID: 36902155 PMCID: PMC10003242 DOI: 10.3390/ijms24054726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Lipase-catalyzed transesterification is a promising and sustainable approach to producing biodiesel. To achieve highly efficient conversion of heterogeneous oils, combining the specificities and advantages of different lipases is an attractive strategy. To this end, highly active Thermomyces lanuginosus lipase (1,3-specific) and stable Burkholderia cepacia lipase (non-specific) were covalently co-immobilized on 3-glycidyloxypropyltrimethoxysilane (3-GPTMS) modified Fe3O4 magnetic nanoparticles (co-BCL-TLL@Fe3O4). The co-immobilization process was optimized using response surface methodology (RSM). The obtained co-BCL-TLL@Fe3O4 exhibited a significant improvement in activity and reaction rate compared with mono and combined-use lipases, achieving 92.9% yield after 6 h under optimal conditions, while individually immobilized TLL, immobilized BCL and their combinations exhibited yields of 63.3%, 74.2% and 70.6%, respectively. Notably, co-BCL-TLL@Fe3O4 achieved 90-98% biodiesel yields after 12 h using six different feedstocks, demonstrating the perfect synergistic effect of BCL and TLL remarkably motivated in co-immobilization. Furthermore, co-BCL-TLL@Fe3O4 could maintain 77% of initial activity after nine cycles by removing methanol and glycerol from catalyst surface, accomplished by washing with t-butanol. The high catalytic efficiency, wide substrate adaptability and favorable reusability of co-BCL-TLL@Fe3O4 suggest that it will be an economical and effective biocatalyst for further applications.
Collapse
|
15
|
Zhao C, Chen H, Wu X, Shan R. Exploiting the Waste Biomass of Durian Shell as a Heterogeneous Catalyst for Biodiesel Production at Room Temperature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1760. [PMID: 36767129 PMCID: PMC9914276 DOI: 10.3390/ijerph20031760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Durian shell, a biomass waste, was simply burned and then could serve as a heterogeneous catalyst for the transesterification reaction of palm oil with methanol at room temperature. The chemical composition, structure, and morphology of the catalyst were well-characterized by XRD, BET, SEM, TEM, EDS, TGA, FT-IR, and XPS measurement. With the preparation temperature rising to 350 °C, the maximum yield of the biodiesel could reach 94.1% at room temperature, and the optimum reaction conditions were 8 wt.% catalyst, 8:1 methanol/oil molar ratio, ad 2.5 h reaction time. The characterizations results indicated that K2O and K2CO3 existed on the surface of catalyst, and a moderate amount of carbon, which acts as a carrier, attributed to the activity of the catalyst. After repeating five times, the catalyst prepared at 350 °C showed better stability than other catalysts. This might be because the incomplete combustion of the remaining carbon slowed down the loss of K to some extent.
Collapse
Affiliation(s)
- Che Zhao
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hongyuan Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiao Wu
- Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Rui Shan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|