1
|
Dong G, Ma G, Zhi J, Yu D, Zhang J, Zhang Y, Li J, Zhao X, Xia H, Zhou Z, Liu J, Miao Y. Increasing biomass concentration facilitates simultaneous nitrogen removal and sludge reduction under low C/N conditions. BIORESOURCE TECHNOLOGY 2024; 413:131532. [PMID: 39332697 DOI: 10.1016/j.biortech.2024.131532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
To overcome the issues of limited carbon source and high sludge production in partial denitrification/anammox (PD/A) process, the effects of mixed liquor suspended solids (MLSS) and carbon/nitrogen ratio (C/N) on PD/A were investigated through parallel experiments. Nitrogen removal efficiencies decreased significantly when C/N was reduced (1.5 → 0.75). When MLSS was doubled, the nitrogen removal efficiencies in the two parallel reactors increased from 75.3 %, 72.9 % to 86.9 %, 89.7 %, respectively, and sludge yields decreased obviously. Combining with in-situ test, it was speculated when MLSS increased, fermentation was enhanced, providing substrate for partial denitrification. Thauera, involved in partial denitrification, decreased obviously with reduced C/N, but increased from 9.93 % to 38.16 % when MLSS doubled, which could promote the PD/A process. Terrimonas and Ignavibacterium (fermentative bacteria) increased from 1.26 %, 5.22 % to 6.62 %, 6.30 %, respectively. These results proved that increasing MLSS under low C/N ratios promoted fermentation in PD/A system, facilitating efficient nitrogen removal and sludge reduction.
Collapse
Affiliation(s)
- Guoqing Dong
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Guocheng Ma
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Jiaru Zhi
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Deshuang Yu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Jianhua Zhang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Yu Zhang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Jiawen Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Xinchao Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Haizheng Xia
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Zian Zhou
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Jianjun Liu
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Yuanyuan Miao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China.
| |
Collapse
|
2
|
Yang X, Yang T, Xu Y. Novel Insights into Alkyl Polyglucoside Biosurfactant Promoting Anaerobic Dark Fermentation for Hydrogen Production in Sludge. Appl Biochem Biotechnol 2024; 196:7849-7860. [PMID: 38568328 DOI: 10.1007/s12010-024-04923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 12/14/2024]
Abstract
Anaerobic fermentation of excess sludge (ES) for hydrogen production is a crucial strategy for resource utilization and environmentally friendly treatment. However, the low hydrolysis efficiency of ES and the depletion of produced hydrogen have become the limiting factors for low hydrogen yield. This study innovatively applied the bio-based surfactant alkyl polyglucoside (APG) to enhance the efficiency of dark fermentation for hydrogen production from ES. When the APG content was 100 mg/g (calculated based on total suspended solids), the maximum hydrogen production reached 17.8 mL/g VSS, approximately 3.7 times that in the control group. Mechanistic analysis revealed that APG promoted the release of organic matter from ES. APG also facilitated the release of soluble protein and soluble polysaccharide, increasing the organic matter reduction rate to 34.8%, significantly higher than other groups. APG enhanced the accumulation of volatile fatty acids and promoted the proportion of small molecular carboxylic acids. Enzyme activity analysis revealed that APG promoted the activity of hydrolytic enzymes but inhibited the activity of hydrogen-consuming enzymes. The research results provide a green and environmentally friendly strategy for the efficient resource utilization of ES.
Collapse
Affiliation(s)
- Xuemei Yang
- School of Chemical and Environmental Engineering, JiaoZuo University, JiaoZuo, 454000, China.
| | - Tiantian Yang
- School of Chemical and Environmental Engineering, JiaoZuo University, JiaoZuo, 454000, China
| | - Yazhou Xu
- Gongyi Branch of Zhengzhou Ecological Environment Bureau, Zhengzhou, 451299, China
| |
Collapse
|
3
|
Cao Z, Sai A, Jia X, Zhang X. Evaluating the effect of antibiotics on aerobic granular sludge treatment of pharmaceutical wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1280-1289. [PMID: 39215738 DOI: 10.2166/wst.2024.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/21/2024] [Indexed: 09/04/2024]
Abstract
Aerobic granular sludge (AGS) has been widely applied in pharmaceutical wastewater treatment due to its advantages such as high biomass and excellent settling performance. However, the influence of commonly found antibiotics in pharmaceutical wastewater on the operational efficiency of AGS has been poorly explored. This study investigated the effects of tetracycline (TE) on AGS treating pharmaceutical wastewater at room temperature and analyzed the related mechanisms. The results demonstrate a dose-dependent relationship between TE's effects on AGS. At concentrations below the threshold of 0.1 mg/L, the effects are considered trivial. In contrast, TE with more than 2.0 mg/L reduces the performance of AGS. In the 6.0 mg/L TE group, COD, TN, and TP removal efficiencies decreased to 72.6-75.5, 54.6-58.9, and 71.6-75.8%, respectively. High concentrations of TE reduced sludge concentration and the proportion of organic matter in AGS, leading to a decline in sludge settling performance. Elevated TE concentrations stimulated extracellular polymeric substance secretion, increasing polymeric nitrogen and polymeric phosphorus content. Intracellular polymer analysis revealed that high TE concentrations reduced polyhydroxyalkanoates but enhanced glycogen metabolism. Enzyme activity analysis disclosed that high TE concentrations decreased the activity of key enzymes associated with nutrient removal.
Collapse
Affiliation(s)
- Zhenghao Cao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China E-mail:
| | - Anning Sai
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xiangxiang Jia
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoyu Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
4
|
Sheik AG, Krishna SBN, Patnaik R, Ambati SR, Bux F, Kumari S. Digitalization of phosphorous removal process in biological wastewater treatment systems: Challenges, and way forward. ENVIRONMENTAL RESEARCH 2024; 252:119133. [PMID: 38735379 DOI: 10.1016/j.envres.2024.119133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Phosphorus in wastewater poses a significant environmental threat, leading to water pollution and eutrophication. However, it plays a crucial role in the water-energy-resource recovery-environment (WERE) nexus. Recovering Phosphorus from wastewater can close the phosphorus loop, supporting circular economy principles by reusing it as fertilizer or in industrial applications. Despite the recognized importance of phosphorus recovery, there is a lack of analysis of the cyber-physical framework concerning the WERE nexus. Advanced methods like automatic control, optimal process technologies, artificial intelligence (AI), and life cycle assessment (LCA) have emerged to enhance wastewater treatment plants (WWTPs) operations focusing on improving effluent quality, energy efficiency, resource recovery, and reducing greenhouse gas (GHG) emissions. Providing insights into implementing modeling and simulation platforms, control, and optimization systems for Phosphorus recovery in WERE (P-WERE) in WWTPs is extremely important in WWTPs. This review highlights the valuable applications of AI algorithms, such as machine learning, deep learning, and explainable AI, for predicting phosphorus (P) dynamics in WWTPs. It emphasizes the importance of using AI to analyze microbial communities and optimize WWTPs for different various objectives. Additionally, it discusses the benefits of integrating mechanistic and data-driven models into plant-wide frameworks, which can enhance GHG simulation and enable simultaneous nitrogen (N) and Phosphorus (P) removal. The review underscores the significance of prioritizing recovery actions to redirect Phosphorus from effluent to reusable products for future considerations.
Collapse
Affiliation(s)
- Abdul Gaffar Sheik
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa.
| | - Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Reeza Patnaik
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Seshagiri Rao Ambati
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy, Visakhapatnam, 530003, Andhra Pradesh, India
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa.
| |
Collapse
|
5
|
Guo X, Chen H, Tong Y, Wu X, Tang C, Qin X, Guo J, Li P, Wang Z, Liu W, Mo J. A review on the antibiotic florfenicol: Occurrence, environmental fate, effects, and health risks. ENVIRONMENTAL RESEARCH 2024; 244:117934. [PMID: 38109957 DOI: 10.1016/j.envres.2023.117934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Florfenicol, as a replacement for chloramphenicol, can tightly bind to the A site of the 23S rRNA in the 50S subunit of the 70S ribosome, thereby inhibiting protein synthesis and bacterial proliferation. Due to the widespread use in aquaculture and veterinary medicine, florfenicol has been detected in the aquatic environment worldwide. Concerns over the effects and health risks of florfenicol on target and non-target organisms have been raised in recent years. Although the ecotoxicity of florfenicol has been widely reported in different species, no attempt has been made to review the current research progress of florfenicol toxicity, hormesis, and its health risks posed to biota. In this study, a comprehensive literature review was conducted to summarize the effects of florfenicol on various organisms including bacteria, algae, invertebrates, fishes, birds, and mammals. The generation of antibiotic resistant bacteria and spread antibiotic resistant genes, closely associated with hormesis, are pressing environmental health issues stemming from overuse or misuse of antibiotics including florfenicol. Exposure to florfenicol at μg/L-mg/L induced hormetic effects in several algal species, and chromoplasts might serve as a target for florfenicol-induced effects; however, the underlying molecular mechanisms are completely lacking. Exposure to high levels (mg/L) of florfenicol modified the xenobiotic metabolism, antioxidant systems, and energy metabolism, resulting in hepatotoxicity, renal toxicity, immunotoxicity, developmental toxicity, reproductive toxicity, obesogenic effects, and hormesis in different animal species. Mitochondria and the associated energy metabolism are suggested to be the primary targets for florfenicol toxicity in animals, albeit further in-depth investigations are warranted for revealing the long-term effects (e.g., whole-life-cycle impacts, multigenerational effects) of florfenicol, especially at environmental levels, and the underlying mechanisms. This will facilitate the evaluation of potential hormetic effects and construction of adverse outcome pathways for environmental risk assessment and regulation of florfenicol.
Collapse
Affiliation(s)
- Xingying Guo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Haibo Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Yongqi Tong
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Can Tang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Xian Qin
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China.
| |
Collapse
|
6
|
Zheng X, Li S, Zheng S, Guo M, Wang Z. Reevaluating the accuracy and specificity of EDTA-based polyphosphate quantification method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169724. [PMID: 38160817 DOI: 10.1016/j.scitotenv.2023.169724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Feng et al. (2020) developed a simple, nondestructive, and cost-effective method to quantify polyphosphate (poly-P) in poly-P-accumulating organism (PAO)-enriched sludge samples through 30-h anaerobic exposure to 1 % (w/v) ethylenediaminetetraacetic acid (EDTA). This study optimized the N/P ratio (∼2) of the PAO culture medium in order to provide excess P for poly-P formation in PAO cells. Subsequently, the fluorescence microscopic observation of stained cells confirmed that Corynebacterium glutamicum was a PAO species capable of heterotrophic nitrification. Finally, this study reevaluated the accuracy and specificity of the EDTA-based quantification method, using two confirmed PAO biomass, three confirmed non-PAO biomass, and two sludge samples. The 1 % (w/v) EDTA treatment appears destructive to non-PAO cells, causes the release of other P forms, and is not effective for all PAO species. Under the conditions, the actual P release amount should be calculated by subtracting approximately 8 mg P g-1 total suspended solids from the determination. The amounts of P released from sludge samples was determined not only by the PAO fractions described by Feng et al. but also by PAO community structure and sludge P content.
Collapse
Affiliation(s)
- Xiangnan Zheng
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Shida Li
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Shaokui Zheng
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China.
| | - Mengya Guo
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Zhixuan Wang
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Fu Z, Zhao J, Guan D, Wang Y, Xie J, Zhang H, Sun Y, Zhu J, Guo L. A comprehensive review on the preparation of biochar from digestate sources and its application in environmental pollution remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168822. [PMID: 38043821 DOI: 10.1016/j.scitotenv.2023.168822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
The preparation of biochar from digestate is one of the effective ways to achieve the safe disposal and resource utilization of digestate. Nevertheless, up to now, a comprehensive review encompassing the factors influencing anaerobic digestate-derived biochar production and its applications is scarce in the literature. Therefore, to fill this gap, the present work first outlined the research hotspots of digestate in the last decade using bibliometric statistical analysis with the help of VOSviewer. Then, the characteristics of the different sources of digestate were summarized. Furthermore, the influencing factors of biochar preparation from digestate and the modification methods of digestate-derived biochar and associated mechanisms were analyzed. Notably, a comprehensive synthesis of anaerobic digestate-derived biochar applications is provided, encompassing enhanced anaerobic digestion, heavy metal remediation, aerobic composting, antibiotic/antibiotic resistance gene removal, and phosphorus recovery from digestate liquor. The economic and environmental impacts of digestate-derived biochar were also analyzed. Finally, the development prospect and challenges of using biochar from digestate to combat environmental pollution are foreseen. The aim is to not only address digestate management challenges at the source but also offer a novel path for the resourceful utilization of digestate.
Collapse
Affiliation(s)
- Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jingliang Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Huawei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
8
|
Rede D, Teixeira I, Delerue-Matos C, Fernandes VC. Assessing emerging and priority micropollutants in sewage sludge: environmental insights and analytical approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3152-3168. [PMID: 38085484 PMCID: PMC10791843 DOI: 10.1007/s11356-023-30963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/05/2023] [Indexed: 01/18/2024]
Abstract
The application of sewage sludge (SS) in agriculture, as an alternative to manufactured fertilizers, is current practice worldwide. However, as wastewater is collected from households, industries, and hospitals, the resulting sludge could contaminate land with creeping levels of pharmaceuticals, pesticides, heavy metals, polycyclic aromatic hydrocarbons, and microplastics, among others. Thus, the sustainable management of SS requires the development of selective methods for the identification and quantification of pollutants, preventing ecological and/or health risks. This study presents a thorough evaluation of emerging and priority micropollutants in SS, through the lens of environmental insights, by developing and implementing an integrated analytical approach. A quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction method, coupled with gas chromatography and liquid chromatography, was optimized for the determination of 42 organic compounds. These include organophosphorus pesticides, organochlorine pesticides, pyrethroid pesticides, organophosphate ester flame retardants, polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. The optimization of the dispersive-solid phase for clean-up, combined with the optimization of chromatographic parameters, ensured improved sensitivity. Method validation included assessments for recovery, reproducibility, limit of detection (LOD), and limit of quantification (LOQ). Recoveries ranged from 59.5 to 117%, while LODs ranged from 0.00700 to 0.271 µg g-1. Application of the method to seven SS samples from Portuguese wastewater treatment plants revealed the presence of sixteen compounds, including persistent organic pollutants. The quantification of α-endosulfan, an organochlorine pesticide, was consistently observed in all samples, with concentrations ranging from 0.110 to 0.571 µg g-1. Furthermore, the study encompasses the analysis of agronomic parameters, as well as the mineral and metal content in SS samples. The study demonstrates that the levels of heavy metals comply with legal limits. By conducting a comprehensive investigation into the presence of micropollutants in SS, this study contributes to a deeper understanding of the environmental and sustainable implications associated with SS management.
Collapse
Affiliation(s)
- Diana Rede
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Ivan Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
| |
Collapse
|
9
|
Zhou L, Guo F, Jiang Y, Liu W, Meng F, Wang C. A pilot-scale SNAD-MBBR process for treating anaerobic digester liquor of swine wastewater: performance and microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120329-120339. [PMID: 37936048 DOI: 10.1007/s11356-023-30840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
In this pilot-scale study, simultaneous partial nitrification, anammox, and denitrification (SNAD) process was achieved successfully in a moving bed biofilm reactor (MBBR) for treating anaerobic digester liquor of swine wastewater. After 95 days of operation, when the total nitrogen loading rate of SNAD-MBBR process was 1.09 kg TN/m3/day, the total nitrogen removal rate could reach 0.87 kg TN/m3/day, and the removal efficiencies of ammonium and total nitrogen were 92.0% and 79.7%, respectively. The optimum pH and temperature for SNAD-MBBR process were 8.5 and 35 °C, respectively, and the optimum dissolved oxygen for SNAD1 and SNAD2 were 0.30 and 0.07 mg/L, respectively. The 16S rRNA sequencing suggested that Candidatus Kuenenia, Candidatus Brocadia, Nitrosomonas, and Denitratisoma were the dominant nitrogen removal bacteria. Some of the co-existing bacteria (Truepera, Limnobacter, and Anaerolineaceae uncultured) promoted ammonium oxidation and guaranteed the growth of the anammox bacteria under adverse environmental conditions. Overall, this study demonstrated that the SNAD-MBBR process would be an energy-saving and cost-effective method for the removal of nitrogen from swine wastewater and provided important process parameters for stable operation of the full-scale SNAD process.
Collapse
Affiliation(s)
- Liang Zhou
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing, 210000, People's Republic of China
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, 210000, People's Republic of China
| | - Fangzheng Guo
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, 210000, People's Republic of China
| | - Yongwei Jiang
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, 210000, People's Republic of China
| | - Weijing Liu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing, 210000, People's Republic of China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
10
|
Zhang H, Zhao J, Fu Z, Wang Y, Guan D, Xie J, Zhang Q, Liu Q, Wang D, Sun Y. Metagenomic approach reveals the mechanism of calcium oxide improving kitchen waste dry anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 387:129647. [PMID: 37567350 DOI: 10.1016/j.biortech.2023.129647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
In light of the characteristics of excessive acidification and low biogas yield during kitchen waste (KW) dry digestion, the impact of the calcium oxide (CaO) on KW mesophilic dry digestion was investigated, and the enhanced mechanism was revealed through metagenomic approach. The results showed that CaO increased the biogas production, when the CaO dosage was 0.07 g/g (based on total solid), the biogas production reached 656.84 mL/g suspended solids (VS), approximately 8.38 times of that in the control. CaO promoted the leaching and hydrolysis of key organic matter in KW. CaO effectively promoted the conversion of volatile fatty acid (VFA) and mitigated over-acidification. Macrogenome analysis revealed that CaO increased the microbial diversity in KW dry digestion and upregulated the abundance of genes related to amino acid and carbohydrates metabolism. This study provides an effective strategy with potential economic benefits to improve the bioconversion efficiency of organic matter in KW.
Collapse
Affiliation(s)
- Hongying Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| | - Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Jingliang Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Qi Zhang
- Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao 266000, PR China
| | - Qingxin Liu
- Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao 266000, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| |
Collapse
|
11
|
Jiang S, Yu D, Xiong F, Lian X, Jiang X. Enhanced methane production from the anaerobic co-digestion of food waste plus fruit and vegetable waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27328-z. [PMID: 37155098 DOI: 10.1007/s11356-023-27328-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Food waste (FW) and fruit, vegetable waste (FVW) are important components of municipal solid waste, yet the performance and related mechanisms of anaerobic co-digestion of FW and FVW for methane production have been rarely investigated. In order to get a deeper understanding of the mechanisms involved, the mesophilic FW and FVW anaerobic co-digestion in different proportions was investigated. The experimental results showed that when the ratio of FW and FVW was 1/1 (in terms of volatile suspended solid), the maximum biomethane yield of 269.9 mL/g TCOD from the codigested substrate is significantly higher than that in FW or FVW anaerobic digestion alone. FW and FVW co-digestion promoted the dissolution and biotransformation of organic matter. When the recommended mixing ratio was applied, the maximum concentration of dissolved chemical oxygen demand (COD) was high as 11971 mg/L. FW and FVW co-digestion reduced the accumulation of volatile fatty acids (VFA) in the digestive system, thus reducing its negative impact on the methanogenesis process. FW and FVW co-digestion process synergistically enhanced microbial activity. The analysis of microbial population structure showed that when FW and FVW were co-digested at the recommended ratio, the relative abundance of Proteiniphilum increased to 26.5%, and the relative abundances of Methanosaeta and Candidatus Methanofastidiosum were also significantly increased. The results of this work provide a certain amount of theoretical basis and technical support for the co-digestion of FW and FVW.
Collapse
Affiliation(s)
- Shangsong Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Dan Yu
- Qingdao Municipal Engineering Design and Research Institute, Qingdao, 266101, China
| | - Fei Xiong
- Qingdao Shunqingyuan Environment Co., Ltd., Qingdao, 266109, China
| | - Xiaoying Lian
- Qingdao Sunrui Marine Environment Co., Ltd., Qingdao, 266101, China
| | - Xiuyan Jiang
- Qingdao Municipal Engineering Design and Research Institute, Qingdao, 266101, China
| |
Collapse
|
12
|
Izadi P, Andalib M. Anaerobic zone Functionality, Design and Configurations for a Sustainable EBPR process: A Critical Review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162018. [PMID: 36740070 DOI: 10.1016/j.scitotenv.2023.162018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/15/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Stringent discharge phosphorus limits and rising urge to reach very low effluent total phosphorus concentrations have challenged the available technologies to further remove phosphorus. The significance of Enhanced Biological Phosphorus Removal (EBPR) process may have been overshadowed by the design and operation limitations. These scarcities mainly root back to the lack of knowledge and understanding of fundamental mechanisms, design standards, and operational guidance. Anaerobic biomass fraction design and operation as a primary driving force for biological phosphorus removal process is commonly outweighed by aerobic and total plant sludge retention operation and design criteria. This paper tends to critically review the different perspectives of mainstream and side-stream EBPR processes and to particularly target contrasting views on hydrolysis and fermentation rates as well as anaerobic condition implementation and magnitude. Subsequently, from distinct point of views, knowledge gaps are comprehensively discussed to eventually recognize the advances and drawbacks aimed to reach a sustainable EBPR process.
Collapse
Affiliation(s)
- Parnian Izadi
- Stantec Consulting Ltd, Stantec Institute for water Technology and Policy, Waterloo, ON, Canada.
| | - Mehran Andalib
- Stantec Consulting Ltd, Stantec Institute for water Technology and Policy, Boston, MA, United States.
| |
Collapse
|
13
|
Zhao J, Wang Y, Guan D, Fu Z, Zhang Q, Guo L, Sun Y, Zhang Q, Wang D. Calcium hypochlorite-coupled aged refuse promotes hydrogen production from sludge anaerobic fermentation. BIORESOURCE TECHNOLOGY 2023; 370:128534. [PMID: 36574889 DOI: 10.1016/j.biortech.2022.128534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
This work investigated the effect of calcium hypochlorite (CH) coupled aged refuse (AR) treatment on the enhanced hydrogen generation from sludge anaerobic dark fermentation (SADF). The enhanced mechanism was systematically revealed through sludge disintegration, organic matter biotransformation, and microbial community characteristics, etc. The experimental data showed that CH coupled AR increased the hydrogen yield to 18.1 mL/g, significantly higher than that in the AR or CH group alone. Mechanistic analysis showed that CH-coupled AR significantly promoted sludge disintegration and hydrolysis processes, providing sufficient material for hydrogen-producing bacteria. Microbiological analysis showed that CH-coupled AR increased the relative abundance of responsible hydrogen-producing microorganisms. In addition, CH-coupled AR was very effective in reducing phosphate content in the fermentation liquid and fecal coliforms in the digestate, thus facilitating the subsequent treatment of fermentation broth and digestate. CH coupled AR is an alternative strategy to increase hydrogen production from sludge.
Collapse
Affiliation(s)
- Jianwei Zhao
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Yuxin Wang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dezheng Guan
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhou Fu
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qi Zhang
- Qingdao Jiebao Ecological Technology Co., Ltd, Qingdao 266113, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qiuzhuo Zhang
- School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|