1
|
Tang S, Liu T, Hu R, Xu X, Wu Y, Meng L, Hattori S, Tawaraya K, Cheng W. Twelve-year conversion of rice paddy to wetland does not alter SOC content but decreases C decomposition and N mineralization in Japan. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120319. [PMID: 38387348 DOI: 10.1016/j.jenvman.2024.120319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Land-use change worldwide has been driven by anthropogenic activities, which profoundly regulates terrestrial C and N cycles. However, it remains unclear how the dynamics and decomposition of soil organic C (SOC) and N respond to long-term conversion of rice paddy to wetland. Here, soil samples from five soil depths (0-25 cm, 5 cm/depth) were collected from a continuous rice paddy and an adjacent wetland (a rice paddy abandoned for 12 years) on Shonai Plain in northeastern Japan. A four-week anaerobic incubation experiment was conducted to investigate soil C decomposition and N mineralization. Our results showed that SOC in the wetland and rice paddy decreased with soil depth, from 31.02 to 19.66 g kg-1 and from 30.26 to 18.86 g kg-1, respectively. There was no significant difference in SOC content between wetland and rice paddy at any depth. Soil total nitrogen (TN) content in the wetland (2.61-1.49 g kg-1) and rice paddy (2.91-1.78 g kg-1) showed decreasing trend with depth; TN was significantly greater in the rice paddy than in the wetland at all depths except 20-25 cm. Paddy soil had significantly lower C/N ratios but significantly larger decomposed C (Dec-C, CO2 and CH4 production) and mineralized N (Min-N, net NH4+-N production) than wetland soil across all depths. Moreover, the Dec-C/Min-N ratio was significantly larger in wetland than in rice paddy across all depths. Rice paddy had higher exponential correlation between Dec-C and SOC, Min-N and TN than wetland. Although SOC did not change, TN decreased by 14.1% after the land-use conversion. The Dec-C and Min-N were decreased by 32.7% and 42.2%, respectively, after the12-year abandonment of rice paddy. Conclusively, long-term conversion of rice paddy to wetland did not distinctly alter SOC content but increased C/N ratio, and decreased C decomposition and N mineralization in 0-25 cm soil depth.
Collapse
Affiliation(s)
- Shuirong Tang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Liu
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ronggui Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xingkai Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanzheng Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Lei Meng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Satoshi Hattori
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Keitaro Tawaraya
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Weiguo Cheng
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan.
| |
Collapse
|