1
|
Wang C, Wang F, Zhang H, Zhang Y, Zhang C, Zang W, Peng M, Yang Y, Wang S, Xu C, Wu A, Zhang Y. Multifunctional polyaniline modified calcium alginate aerogel membrane with antibacterial, oil-water separation, dye and heavy metal ions removal properties for complex water purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172058. [PMID: 38552978 DOI: 10.1016/j.scitotenv.2024.172058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
With the rapid development of urbanization, the discharge of industrial wastewater has led to increasingly critical water pollution issues. Additionally, heavy metals, organic dyes, microorganisms and oil pollution often coexist and have persistence and harmfulness. Developing materials that can treat these complex pollutants simultaneously has important practical significance. In this study, a calcium alginate-based aerogel membrane (PANI@CA membrane) was prepared by spraying, polymerization, Ca2+ cross-linking and freeze-drying using aniline and sodium alginate as raw materials. Oil-water emulsion can be separated by PANI@CA membrane only under gravity, and the separation efficiency was as high as 99 %. At the same time, the membrane can effectively intercept or adsorb organic dyes and heavy metal ions. The removal rates of methylene blue and Congo red were above 92 % and 63 % respectively even after ten times of cyclic filtration. The removal rate of Pb2+ was up to 95 %. In addition, PANI@CA membrane shows excellent photothermal conversion ability, and it can effectively kill Staphylococcus aureus under 808 nm laser irradiation. PANI@CA membrane has the advantages of low cost, simple preparation, good stability and high recycling ability, and has potential application prospects in wastewater treatment.
Collapse
Affiliation(s)
- Chaozhen Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfang Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Hao Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yuenan Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenguang Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Wen Zang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Minjie Peng
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Yiyu Yang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Shiwei Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Xu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yujie Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Zhu Z, Zhou C, Zhou D, Kou HQ, Zhang TE, Peng WM, Wu ZY. Performance and mechanism of amphiphilic polymeric chelator for enhanced removal of high concentrations of Cu(II) from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21869-21880. [PMID: 38400973 DOI: 10.1007/s11356-024-32545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
An amphiphilic polymeric chelator (APC16-g-SX) grafted with sodium xanthate (SX) groups was successfully prepared for the efficient removal of high concentrations of Cu(II) from wastewater. The ordinary polymeric chelator (PAM-g-SX) based on linear polyacrylamide (PAM) was also prepared for comparative studies. The polymeric chelators were characterized by Fourier transform infrared spectroscopy (FT-IR), solid-state nuclear magnetic resonance (13C-NMR), gel permeation chromatography (GPC), elemental analyzer, and scanning electron microscope (SEM). The chelating performance of these polymeric chelators was investigated, and the mechanism of APC16-g-SX for enhanced removal of Cu(II) from wastewater was proposed based on fluorescence spectroscopy, cryo-scanning electron microscope (Cryo-SEM), energy-dispersive spectrometer (EDS), and X-ray photoelectron spectroscopy (XPS) tests. The results show that as the initial Cu(II) concentration in the wastewater increases, APC16-g-SX shows more excellent chelating performance than ordinary PAM-g-SX. For the wastewater with an initial Cu(II) concentration of 200 mg/L, the removal rate of Cu(II) was 99.82% and 89.34% for both 500 mg/L APC16-g-SX and PAM-g-SX, respectively. The pH of the system has a very great influence on the chelating performance of the polymeric chelators, and the increase in pH of the system helps to improve the chelating performance. The results of EDS and XPS tests also show that N, O, and S atoms in APC16-g-SX were involved in the chelation of Cu(II). The mechanism of enhanced removal of Cu(II) by APC16-g-SX can be attributed to the spatial network structure constructed by the self-association of hydrophobic groups that enhances the utilization of chelation sites.
Collapse
Affiliation(s)
- Zhou Zhu
- School of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China.
- Key Laboratory of Nanchang City for Green New Materials and Industrial Wastewater Treatment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China.
| | - Chen Zhou
- School of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
- Key Laboratory of Nanchang City for Green New Materials and Industrial Wastewater Treatment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
| | - Dan Zhou
- School of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
- Key Laboratory of Nanchang City for Green New Materials and Industrial Wastewater Treatment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
| | - Hai-Qun Kou
- School of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
- Key Laboratory of Nanchang City for Green New Materials and Industrial Wastewater Treatment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
| | - Tian-En Zhang
- School of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
| | - Wen-Ming Peng
- School of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
| | - Zi-Ying Wu
- School of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
| |
Collapse
|
3
|
Ren K, Fan Y, Xing G, Zhai M, Sheng J, Song Y. Rapid and convenient synthesis of "green" ammonium-modified chitosan composite sponge with the existence of ascorbic acid for highly efficient removal of Congo red (CR). Carbohydr Polym 2024; 324:121444. [PMID: 37985072 DOI: 10.1016/j.carbpol.2023.121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 11/22/2023]
Abstract
In this study, a new green composite sponge made of chitosan and modified with ammonium ascorbate (ACS-CIT) was synthesized in just 10 min. Compared with CS-CIT (sponge prepared from acetic acid), ACS-CIT exhibits significantly enhanced adsorption performance for CR, with the saturated adsorption capacities increased from 353.667 to 1261.639 mg·g-1. The adsorption mechanism can be summarized as the generation of more hydrogen bonds, electrostatic attraction, and intra particle diffusion, revealing the addition of ascorbic acid introduced more hydroxyl groups, thereby enhancing the hydrogen bonding force, and the ammonium modification of chitosan improved the electrostatic attraction of the material, resulting in a significant increase in its adsorption capacity. Additionally, the prepared ACS-CIT showed excellent CR removal performance even in the presence of multiple interfering factors coexisting in the simulated wastewater, and the adsorption capacity remained stable after at least five cycles. Furthermore, the maximum bed capacity of ACS-CIT for CR is 1152.829 mg·g-1 under the given conditions of a flow rate of 1 mL·min-1, inlet concentration of 150 mg·L-1, a bed height of 1 cm respectively, and the breakthrough curve followed the Thomas model. The results indicated the eco-friendly and recyclable ACS-CIT is a promising adsorbent for CR dye removal in water.
Collapse
Affiliation(s)
- Keyu Ren
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yanan Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Guozheng Xing
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Mengge Zhai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jie Sheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| | - Yishan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| |
Collapse
|