1
|
Song W, Fang H, Lei Z, Wang R, Fu C, Wang F, Fang Y, Du X, Wang Z, Zhao Z. Insight into homogeneous activation of sodium hypochlorite by dithionite coupled with dissolved oxygen (DO@NaClO/DTN) for carbamazepine degradation. WATER RESEARCH 2025; 277:123312. [PMID: 39983265 DOI: 10.1016/j.watres.2025.123312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/15/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Emerging contaminants (ECs) including carbamazepine (CBZ) in aquatic systems pose non-target risks to wildlife. We introduce an innovative advanced oxidation process (AOP) utilizing sodium hypochlorite (NaClO), which achieved 45.3 % degradation and mineralization of CBZ within 60 mins. Natural saturated state dissolved oxygen (DO, ∼7.5 mg·L-1) played a crucial role in synergistically activating NaClO with dithionite (DTN) without extra energy consumption. In DO@NaClO/DTN system, scavenging tests and electron spin resonance (ESR) analysis confirmed that ·OH and Cl· were dominant for CBZ degradation. The critical DO was responsible for the direct simultaneous production of ·OH and Cl·, confirmed by the greater thermodynamic data ΔG from density functional theory (DFT) calculation. These reactive species participate in subsequent transformations of SO4·-, O2·-, and 1O2. Preferential hydroxylation of CBZ first occurred due to the attacking at the reactive sites of C(21) and C(22) atoms. LC-MS/MS detection and DFT theoretical calculations also verified the sequent mechanisms of Meinwald rearrangement, deamidation and hydroxylation, cyclized hydroxylated and dehydrated with the decreasing ΔG. Ubiquitous Cl- accelerated CBZ degradation remarkably, regardless of its concentration. The significant enhancement of Cl- for CBZ degradation in DO@NaClO/DTN system suggest its promising application for ECs degradation in high-chloride seawater including offshore wastewater and tailwater in mariculture.
Collapse
Affiliation(s)
- Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongze Fang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhaosheng Lei
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ruigang Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 51060, China
| | - Caixia Fu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 51060, China.
| | - Fei Wang
- Shandong Marine Resource and Environment Research Institute, Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Yuning Fang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhiwei Zhao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Cross Research Institute of Ocean Engineering Safety and Sustainable Development, Guangzhou 510000, China
| |
Collapse
|
2
|
Zhao T, Han G, Bai J, Wu X. Heterogeneous Activation of NaClO by Nano-CoMn 2O 4 Spinel for Methylene Blue Decolorization. Int J Mol Sci 2025; 26:940. [PMID: 39940710 PMCID: PMC11816598 DOI: 10.3390/ijms26030940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
In this study, the nano-spinel CoMn2O4 was synthesized by coprecipitation pyrolysis and employed to heterogeneously activate hypochlorite (NaClO) for the oxidative decolorization of methylene blue (MB). The crystal structure, elemental composition, surface morphology, and microstructure of the prepared CoMn2O4 nano-spinel were analyzed using a series of characterization techniques. The pyrolysis temperature was screened on the basis of MB decolorization efficiency and the leaching of metal ions during the reaction. The MB decolorization efficiency was compared using different catalysts and process. The impacts of CoMn2O4 dosage, effective chlorine dose, MB concentration, and initial pH on MB decolorization were explored. The catalytic mechanism of MB oxidation was elucidated through quenching experiments combined with radical identification. The degradation pathway of MB was preliminarily proposed based on the detection of the intermediates. The reusability of recycled CoMn2O4 was finally investigated. The results revealed that maximal MB oxidation efficiency and minimal leaching of Co and Mn ions were achieved at the calcination temperature of 600 °C. Complete oxidative decolorization of MB within 40 min was obtained at an initial MB concentration of 50 mg/L, a CoMn2O4 dosage of 1 g/L, an effective chlorine dose of 0.1%, and an initial pH of 4.3. Superoxide radical (O2•-) was found to be dominantly responsible for MB decolorization according to the results of radical scavenging experiments and electron paramagnetic resonance. The CoMn2O4 spinel can be recycled for five cycles with the MB removal in the range of 90.6~98.7%.
Collapse
Affiliation(s)
| | | | | | - Xiaogang Wu
- School of Urban Construction, Yangtze University, Jingzhou 434023, China; (T.Z.); (G.H.); (J.B.)
| |
Collapse
|
3
|
Qiu L, Yan C, Zhang Y, Chen Y, Nie M. Hypochlorite-mediated degradation and detoxification of sulfathiazole in aqueous solution and soil slurry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124039. [PMID: 38670426 DOI: 10.1016/j.envpol.2024.124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Although various activated sodium hypochlorite (NaClO) systems were proven to be promising strategies for recalcitrant organics treatment, the direct interaction between NaClO and pollutants without explicit activation is quite limited. In this work, a revolutionary approach to degrade sulfathiazole (STZ) in aqueous and soil slurry by single NaClO without any activator was proposed. The results demonstrated that 100% and 94.11% of STZ could be degraded by 0.025 mM and 5 mM NaClO in water and soil slurry, respectively. The elimination of STZ was shown to involve superoxide anion (O2•-), chlorine oxygen radical (ClO•), and hydroxyl radical (•OH), according to quenching experiments and the analysis of electron paramagnetic resonance. The addition of Cl-, HCO3-, SO42-, and humic acid (HA) marginally impeded the decomposition of STZ, while NO3-, Fe3+, and Mn2+ facilitated the process. The NaClO process exhibited significant removal effectiveness at a neutral initial pH. Moreover, the NaClO facilitated application in various soil samples and water matrices, and the procedure was also successful in effectively eliminating a range of sulfonamides. The suggested NaClO degradation mechanism of STZ was based on the observed intermediates, and the majority of the products exhibited lower ecotoxicity than STZ. Besides, the experiment results by using X-ray diffraction (XRD) and a fourier transform infrared spectrometer (FTIR) indicated the negligible effects on the composition and structure of soil by the treatment of NaClO. Simultaneously, the experimental results also illustrated that the bioavailability of heavy metals and the physiochemical characteristics of the soil before and after the remediation did not change to a significant extent. Following the remediation of NaClO, the phytotoxicity tests showed reduced toxicity to wheat and cucumber seeds. As a result, treating soil and water contaminated with STZ by using NaClO was a reasonably practical and eco-friendly method.
Collapse
Affiliation(s)
- Longhui Qiu
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Caixia Yan
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Yue Zhang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Yabing Chen
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Minghua Nie
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|