1
|
Yuan G, Zheng Y, Sun X. Unveiling Microbial Dynamics: How Forest Aging Shapes the Microbial Communities of Pinus massoniana. Ecol Evol 2025; 15:e71132. [PMID: 40071151 PMCID: PMC11896641 DOI: 10.1002/ece3.71132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Plants host diverse microbial communities essential for nutrient acquisition, growth, and responses to biotic and abiotic stresses. Despite their importance, the variation and stability of these communities during forest succession remain poorly understood. This study investigated the microbial communities in Pinus massoniana forests at different stand ages (12, 22, 30, and 40 years). Results showed that the phyllosphere and roots of P. massoniana harbor diverse microbial communities, which shift dynamically with forest aging. Bacterial species diversity consistently surpassed fungal diversity across all habitats. Forest aging significantly influenced the alpha diversity of phyllosphere and soil microbes, whereas root-associated microbial diversity remained stable. Co-occurrence network analysis revealed that bacterial communities formed more complex networks than fungal communities and exhibited greater stability. Functional annotation confirmed that bacterial communities were functionally more stable, predominantly involving metabolic processes. In contrast, endophytes dominated the phyllosphere fungi, while ectomycorrhizal fungi were prevalent in root and soil fungal communities. Environmental factors, including total nitrogen, total phosphorus, available potassium, and pH, emerged as key drivers of microbial dynamics. These findings provide novel insights into the differing responses of bacterial and fungal communities to forest aging, highlighting the critical role of ecological niches in shaping microbial dynamics.
Collapse
Affiliation(s)
- Guiyun Yuan
- Institute for Forest Resources and Environment of GuizhouGuizhou UniversityGuiyangChina
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou ProvinceGuizhou UniversityGuiyangGuizhouChina
- College of ForestryGuizhou UniversityGuiyangChina
| | - Yang Zheng
- Institute for Forest Resources and Environment of GuizhouGuizhou UniversityGuiyangChina
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou ProvinceGuizhou UniversityGuiyangGuizhouChina
- College of ForestryGuizhou UniversityGuiyangChina
| | - Xueguang Sun
- Institute for Forest Resources and Environment of GuizhouGuizhou UniversityGuiyangChina
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou ProvinceGuizhou UniversityGuiyangGuizhouChina
- College of ForestryGuizhou UniversityGuiyangChina
| |
Collapse
|
2
|
Wu B, Wan Q, Li X, Lin S, Jiang Y, Yang X, Li J, Lin Q, Morel JL, Qiu R. Heavy metal migration dynamics and solid-liquid distribution strategy in abandoned tailing soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133794. [PMID: 38368686 DOI: 10.1016/j.jhazmat.2024.133794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The tailings soil originating from an abandoned sulfur-iron mine in Sichuan Province, China, exhibits elevated concentrations of heavy metals (HMs) and possesses limited soil conservation capacity. Variability soil particle size fractions (PSFs) contributes to an increased risk of HMs ion migration. Existing research on HMs behavior has focused on the bulk soil scale, resulting in a dearth of comprehensive information concerning different particle sizes and colloid scales. We collected soil samples from upstream source (XWA), migration path (XWB), and downstream farmland (XWC) of an abandoned tailing and categorized into sand, silt, clay, colloid and dissolved, respectively. The investigation primarily aimed to elucidate the solid-liquid distribution trade-off strategies of soil HMs along migration pathway. Results show that PSFs composition predominantly influences HMs solid-liquid distribution. In the mining area, large particles serve as the principal component for HMs enrichment. However, along the migration pathway, the proportion of highly mobile fine particles increases, shifting HMs from solid to liquid phase. Furthermore, inorganic elements such as Mg, Al, and Fe influence on HMs distribution within PSFs through various reactions, whereas organic matter and glomalin-related soil protein (GRSP) also exert regulatory roles. Increasing the proportion of large particles can reduce the risk of HMs migration.
Collapse
Affiliation(s)
- Bohan Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Quan Wan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shukun Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanqi Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xu Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jean Louis Morel
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine, INRAE, 54518 Vandoeuvre-lès-Nancy, France
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Yadav PK, Singh S, Paul M, Kumar S, Ponmariappan S, Thavaselvam D. Development of a novel sequence based real-time PCR assay for specific and sensitive detection of Burkholderia pseudomallei in clinical and environmental matrices. Ann Clin Microbiol Antimicrob 2024; 23:30. [PMID: 38600514 PMCID: PMC11007888 DOI: 10.1186/s12941-024-00693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Melioidosis, caused by the category B biothreat agent Burkholderia pseudomallei, is a disease with a high mortality rate and requires an immediate culture-independent diagnosis for effective disease management. In this study, we developed a highly sensitive qPCR assay for specific detection of Burkholderia pseudomallei and melioidosis disease diagnosis based on a novel target sequence. METHODS An extensive in-silico analysis was done to identify a novel and highly conserved sequence for developing a qPCR assay. The specificity of the developed assay was analyzed with 65 different bacterial cultures, and the analytical sensitivity of the assay was determined with the purified genomic DNA of B. pseudomallei. The applicability of the assay for B. pseudomallei detection in clinical and environmental matrices was evaluated by spiking B. pseudomallei cells in the blood, urine, soil, and water along with suitable internal controls. RESULTS A novel 85-nucleotide-long sequence was identified using in-silico tools and employed for the development of the highly sensitive and specific quantitative real-time PCR assay S664. The assay S664 was found to be highly specific when evaluated with 65 different bacterial cultures related and non-related to B. pseudomallei. The assay was found to be highly sensitive, with a detection limit of 3 B. pseudomallei genome equivalent copies per qPCR reaction. The detection limit in clinical matrices was found to be 5 × 102 CFU/mL for both human blood and urine. In environmental matrices, the detection limit was found to be 5 × 101 CFU/mL of river water and 2 × 103 CFU/gm of paddy field soil. CONCLUSIONS The findings of the present study suggest that the developed assay S664 along with suitable internal controls has a huge diagnostic potential and can be successfully employed for specific, sensitive, and rapid molecular detection of B. pseudomallei in various clinical and environmental matrices.
Collapse
Affiliation(s)
- Pranjal Kumar Yadav
- Biodetector Development Test and Evaluation Division, Defence Research & Development Establishment, Defence Research and Development Organization, Jhansi Road, Gwalior, Madhya Pradesh, 474 002, India
| | - Suchetna Singh
- Biodetector Development Test and Evaluation Division, Defence Research & Development Establishment, Defence Research and Development Organization, Jhansi Road, Gwalior, Madhya Pradesh, 474 002, India
| | - Moumita Paul
- Biodetector Development Test and Evaluation Division, Defence Research & Development Establishment, Defence Research and Development Organization, Jhansi Road, Gwalior, Madhya Pradesh, 474 002, India
| | - Sanjay Kumar
- Biodetector Development Test and Evaluation Division, Defence Research & Development Establishment, Defence Research and Development Organization, Jhansi Road, Gwalior, Madhya Pradesh, 474 002, India.
| | - S Ponmariappan
- Biodetector Development Test and Evaluation Division, Defence Research & Development Establishment, Defence Research and Development Organization, Jhansi Road, Gwalior, Madhya Pradesh, 474 002, India
| | - Duraipandian Thavaselvam
- O/o DGLS, Defence Research and Development Organization, Ministry of Defence, SSPL Campus, Timarpur, New Delhi, 110 054, India.
| |
Collapse
|