1
|
Haider MN, O'Higgins L, O'Shea R, Archer L, Wall DM, Verma N, Rodero MDR, Mehmood MA, Murphy JD, Bose A. Selecting optimal algal strains for robust photosynthetic upgrading of biogas under temperate oceanic climates. Biotechnol Adv 2025; 82:108581. [PMID: 40258525 DOI: 10.1016/j.biotechadv.2025.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Biogas generated from anaerobic digestion can be upgraded to biomethane by photosynthetic biogas upgrading, using CO2 as a bioresource for algal (cyanobacteria and microalgae) cultivation. This allows the upgrading technology to offer economic and environmental benefits to conventional physiochemical upgrading techniques (which can be energy-intensive and costly) by co-generating biomethane with high-value biomass. However, a critical challenge in implementing this technology in temperate oceanic climatic conditions (as found in Japan, and the northwest coasts of Europe and of North America, with average temperatures ranging between 5 and 20 °C) is the selection of algal strains that must be capable of sustained growth under lower ambient temperatures. Accordingly, this paper investigated the selection of algae that met seven key criteria: optimal growth at high pH (9-11); at alkalinity of 1.5-2.5 g inorganic carbon per litre; operation at low temperature (5-20 °C); tolerance to high CO2 concentrations (above 20 %); capability for mixotrophic cultivation; ability to accumulate high-value metabolites such as photosynthetic pigments and bioactive fatty acids; and ease of harvesting. Of the twenty-six algal species assessed and ranked using a Pugh Matrix, Anabaena sp. and Phormidium sp. were assessed as the most favourable species, followed by Oscillatoria sp., Spirulina subsalsa, and Leptolyngbya sp. Adaptive laboratory evolution together with manipulation of abiotic factors could be effectively utilised to increase the efficiency and economic feasibility of the use of the selected strain in a photosynthetic biogas upgrading system, through improvement of growth and yield of high-value compounds.
Collapse
Affiliation(s)
- Muhammad Nabeel Haider
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Linda O'Higgins
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Richard O'Shea
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Lorraine Archer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - David M Wall
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Nikita Verma
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - María Del Rosario Rodero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Jerry D Murphy
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Archishman Bose
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland.
| |
Collapse
|
2
|
Chen Y, Wei Y, Chen W, Ye L, Zhang M, Liu X, Zhao T, Liu W, He H. Simultaneous CO 2 and biogas slurry treatment using a newly isolated microalga with high CO 2 tolerance. BIORESOURCE TECHNOLOGY 2024; 414:131644. [PMID: 39419404 DOI: 10.1016/j.biortech.2024.131644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
The fixation of carbon dioxide (CO2) using microalgae is a promising CO2 capture and utilization technology. Microalgae have also been suggested as a potential treatment for biogas slurry (BS). This study screened microalgae capable of tolerating both high CO2 concentrations and BS, assessed their CO2 fixation and pollutant removal capabilities, and evaluated the potential use of the resulting algal biomass. Chlamydopodium sp. HS01, which showed the highest tolerance to 15% CO2 and BS, was selected due to its strong growth, CO2 fixation, and ammonia nitrogen removal abilities. The generated biomass also demonstrated significant potential for bioenergy production. Metabolomics analysis revealed that the lipid composition of HS01 underwent substantial changes under 15% CO2 alone and in combination with BS, likely as a stress adaptation strategy. Overall, HS01 presents high potential for resource utilization of CO2 coupled with actual BS.
Collapse
Affiliation(s)
- Yinghuan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yisong Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Wenhan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Limin Ye
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Minhong Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xuange Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Tianzhen Zhao
- Zhongshan Agricultural Product Quality and Safety Inspection Institute, Zhongshan 528403, China
| | - Weiwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hongzhi He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Scapini T, Woiciechowski AL, Manzoki MC, Molina-Aulestia DT, Martinez-Burgos WJ, Fanka LS, Duda LJ, Vale ADS, de Carvalho JC, Soccol CR. Microalgae-mediated biofixation as an innovative technology for flue gases towards carbon neutrality: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121329. [PMID: 38852420 DOI: 10.1016/j.jenvman.2024.121329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Microalgae-mediated industrial flue gas biofixation has been widely discussed as a clean alternative for greenhouse gas mitigation. Through photosynthetic processes, microalgae can fix carbon dioxide (CO2) and other compounds and can also be exploited to obtain high value-added products in a circular economy. One of the major limitations of this bioprocess is the high concentrations of CO2, sulfur oxides (SOx), and nitrogen oxides (NOx) in flue gases, according to the origin of the fuel, that can inhibit photosynthesis and reduce the process efficiency. To overcome these limitations, researchers have recently developed new technologies and enhanced process configurations, thereby increased productivity and CO2 removal rates. Overall, CO2 biofixation rates from flue gases by microalgae ranged from 72 mg L-1 d -1 to over 435 mg L-1 d-1, which were directly influenced by different factors, mainly the microalgae species and photobioreactor. Additionally, mixotrophic culture have shown potential in improving microalgae productivity. Progress in developing new reactor configurations, with pilot-scale implementations was observed, resulting in an increase in patents related to the subject and in the implementation of companies using combustion gases in microalgae culture. Advancements in microalgae-based green technologies for environmental impact mitigation have led to more efficient biotechnological processes and opened large-scale possibilities.
Collapse
Affiliation(s)
- Thamarys Scapini
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Adenise Lorenci Woiciechowski
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil.
| | - Maria Clara Manzoki
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Denisse Tatiana Molina-Aulestia
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Walter Jose Martinez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Letícia Schneider Fanka
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Leonardo José Duda
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Alexander da Silva Vale
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Julio Cesar de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| |
Collapse
|
4
|
Xin K, Cheng J, Guo R, Qian L, Wu Y, Yang W. Nuclear mutagenesis and adaptive evolution improved photoautotrophic growth of Euglena gracilis with flue-gas CO 2 fixation. BIORESOURCE TECHNOLOGY 2024; 397:130497. [PMID: 38408501 DOI: 10.1016/j.biortech.2024.130497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
To effectively improve biomass growth and flue-gas CO2 fixation of microalgae, acid-tolerant Euglena gracilis was modified with cobalt-60 γ-ray irradiation and polyethylene glycol (PEG) adaptive screening to obtain the mutant strain M800. The biomass dry weight and maximum CO2 fixation rate of M800 were both 1.47 times higher than that of wild strain, which was attributed to a substantial increase in key carbon fixation enzyme RuBisCO activity and photosynthetic pigment content. The high charge separation quantum efficiency in PSII reaction center, efficient light utilization and energy regulation that favors light conversion, were the underlying drivers of efficient photosynthetic carbon fixation in M800. M800 had stronger antioxidant capacity in sufficient high-carbon environment, alleviating lipid peroxidation damage. After adding 1 mM PEG, biomass dry weight of M800 reached 2.31 g/L, which was 79.1 % higher than that of wild strain. Cell proliferation of M800 was promoted, the apoptosis and necrosis rates decreased.
Collapse
Affiliation(s)
- Kai Xin
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China; Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing 400044, China; Dongtai Cibainian Bioengineering Company Limited, Yancheng 224200, China.
| | - Ruhan Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Lei Qian
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Yulun Wu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
5
|
Chauhan DS, Mohanty K. Exploring microalgal nutrient-light synergy to enhance CO 2 utilization and lipid productivity in sustainable long-term water recycling cultivation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120631. [PMID: 38522275 DOI: 10.1016/j.jenvman.2024.120631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/01/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024]
Abstract
In this work the effects of nutrient availability and light conditions on CO2 utilization and lipid production in Micractinium pusillum KMC8 is reported. The study investigated the ideal nitrogen concentrations for growth and nitrogen utilization in a 15% CO2 environment. Logistic and Gompertz models were employed to analyze the kinetics of KMC8 cell growth. Compared to 17.6 mmol L-1 control nitrogen, which generated 1.6 g L-1 growth, doubling and quadrupling nitrogen concentrations boosted biomass growth by 12.5% and 28.78%. At 8.6 mmol L-1 nitrogen, the growth decreased but lipid productivity increased to 18.62 mg L-1 day-1. At 70.6 mmol L-1 nitrogen, elevated nitrogen levels maintained an alkaline pH above 7 and enhanced CO2 mitigation, achieving 2.27% CO2 utilization efficiency. Nitrogen shows a positive correlation with higher rates of carbon and nitrogen fixation. The investigation extends to find out the influence of phosphorus and light conditions on microalgae. Increasing light intensity incrementally from 150 to 1200 μmol m-2 s-1 with more phosphorus increased biomass productivity by 85% (255 mg L-1 day-1) and lipid productivity by 2.5-fold (84.76 mg L-1 day-1), with 3.3% CO2 utilization efficiency compared to directly using 1200 μmol m-2 s-1. This study suggests a water recycling-fed batch cycle with gradual light feeding, which results in high CO2 fixation (1.1 g L-1 day-1), 7% CO2 utilization, and significant biomass and lipid productivity (577.23 and 150 mg L-1 day-1). This approach promotes lipid synthesis, maintains carbon fixation, and minimizes biomass loss, thus supporting sustainable bioenergy development in a circular bio-economy framework.
Collapse
Affiliation(s)
- Deepesh Singh Chauhan
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Kaustubha Mohanty
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|