1
|
Chen K, Wang J, Huang X, Mu R, Luo C, Wu D, Liu J, Lu J, Cheng X. Gradient purification of surface water and ultrafiltration membrane fouling mitigation based on Fe(VI) multifunctional integration characteristics: Is a sedimentation unit necessary? WATER RESEARCH 2025; 280:123508. [PMID: 40118003 DOI: 10.1016/j.watres.2025.123508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Ferrate (Fe(VI)) can provide oxidation and in-situ coagulation/adsorption for the removal of emerging contaminants and natural organic matter, and can be used in conjunction with ultrafiltration (UF) membrane to enhance the removal of composite contaminants and mitigate UF membrane fouling. Based on the Fe(VI) multifunctional integration characteristics, the study objectively and comprehensively verified the gradient purification of surface water and the UF membrane fouling mitigation by Fe(VI)-UF and sulfite (S(IV)) activated Fe(VI) (S(IV)/Fe(VI))-UF, elucidated the effect of sedimentation unit on the UF mechanism and the membrane fouling behaviors, and revealed the free energy changes throughout the UF process. The experimental results demonstrated that S(IV)/Fe(VI)-UF showed superior purification performance and UF membrane fouling mitigation than Fe(VI)-UF. S(IV)/Fe(VI)-UF achieved removals of sulfamethoxazole, DOC, and UV254 up to 77.73 %, 61.86 %, and 86.33 %, and was able to significantly mitigate UF membrane fouling by prolonging the transition stage and positively shifting the interfacial free energy. Innovatively, the absence of a sedimentation unit was found to adversely affect the initial stages of Fe(VI)-UF and S(IV)/Fe(VI)-UF by lowering the energy barriers, while negligibly affecting cake filtration. Additionally, the water treatment cost of S(IV)/Fe(VI) was 0.3 yuan per ton, indicating notable economic benefits and engineering potential. While deepening the understanding of Fe(VI) multifunctional integration characteristics, the above results provided theoretical and data support for S(IV)/Fe(VI)-UF and Fe(VI)-UF treatment of surface water, and enriched the application scenarios of Fe(VI)-related technologies.
Collapse
Affiliation(s)
- Kunyu Chen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jie Wang
- Shandong Huankeyuan Environmental Engineering Co. Ltd, Jinan 250100, China
| | - Xiaojiang Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Congwei Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jing Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| |
Collapse
|
2
|
Zhang H, Xing F, Duan L, Gao Q, Li S, Zhao Y. Effect of substrate concentration on sulfamethoxazole wastewater treatment by osmotic microbial fuel cell: Insight into operational efficiency, dynamic changes of membrane fouling and microbial response. BIORESOURCE TECHNOLOGY 2025; 417:131805. [PMID: 39542061 DOI: 10.1016/j.biortech.2024.131805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
To solve the problems of antibiotic pollution, water resources and energy shortage, an osmotic microbial fuel cell (OsMFC) was adopted innovatively to treat antibiotic wastewater containing sulfamethoxazole (SMX), and achieved SMX removal, water production and electricity generation. Substrate concentration was one of the key factors affecting the performances of OsMFC, but there were few relevant studies This study explored the effect of substrate concentration on system performances, clarified the dynamic changes of membrane fouling under different substrate concentrations, and further revealed the response of microbial communities. The results showed that the stable removal efficiency of SMX exceeded 98.8 % due to the efficient interception of forward osmosis (FO) membrane. Compared with the 1.0 g/L NaAc system, the SMX degradation efficiency and maximum output voltage in the 2.0 g/L NaAc system were only increased by 3.9 % and 6.3 %, respectively. However, the initial water flux decreased by 30.1 % in the 7th cycle due to more serious FO membrane fouling. In addition, there were significant differences in the dynamic formation process of FO membrane fouling. Higher substrate concentration increased the relative abundance of Desulfobacterota and Geobacter. Functional prediction analysis showed that increasing substrate concentration promoted carbohydrate metabolism pathways and relative abundance of sulfur respiration functional groups, thereby improving COD and SMX removal rates. However, the biosynthesis of other secondary metabolites was significantly improved, resulting in increased contents of EPS and SMP, which aggravated membrane fouling. Overall, the system performed better when the substrate concentration was 1.0 g/L. This study would provide certain guidance for the performance optimization and membrane fouling mitigation of OsMFC, thereby promoting its practical application in antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Hengliang Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fei Xing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yang Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
3
|
Zhao Y, Sun Y, Han Y, Li J, Ding N, Shibata T, Wu Q. Effect of micro-granular activated carbon on bacteriophage MS2 removal and fouling control in flat-plate MBR. ENVIRONMENTAL RESEARCH 2025; 264:120408. [PMID: 39577717 DOI: 10.1016/j.envres.2024.120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Pathogenic microorganisms pose a severe risk to the aquatic environment and human health. Membrane bioreactors (MBRs) have attracted much attention due to their simultaneous biological treatment and virus retention, but membrane fouling is the main obstacle. This study explored the effect of micro-granular activated carbon (μGAC) on bacteriophage MS2 removal efficiency and membrane fouling in a flat-plate MBR. The results showed that the μGAC addition with a particle size of 180-300 μm improved the removal of MS2 (LRVMBR of 4.77 log) and enhanced the removal of COD and ammonia nitrogen. The μGAC integrated MBR (μGAC-MBR) exhibited a higher MS2 retention rate by the membrane filter layers with an average LVRMem of 2.03 log compared to that of a control reactor (C-MBR) of 1.89 log. Meanwhile, the total membrane filter layer resistance of μGAC-MBR was significantly lower than that of C-MBR, particularly in terms of cake layer resistance and organic pore-blocking exclusion. The μGAC addition slightly reduced MS2 adsorption by the activated sludge while significantly altering the extracellular polymeric substances (EPS) profiles. The fluorescent components in the bound EPS and PN/PS ratio of the activated sludge were reduced. We found that μGAC enhanced membrane surface roughness and hydrophilicity. Notably, the μGAC significantly influenced the quorum sensing (QS) systems, reducing the abundance and synthesis of AHL-related genes. The synthase luxI in the AHL-QS system was reduced by 93.21% in μGAC-MBR. The AHL-QS system is closely related to biofilm formation, and the total EPS of the surface filer layer of μGAC-MBR decreased by 57.73%, and PN in LB-EPS and TB-EPS decreased by 91.33% and 54.44% compared with C-MBR, indicating a significant reduction in biofilm formation. This study exhibited a new perspective on promoting MS2 removal with the synergistic effect of alleviating fouling in the MBR process.
Collapse
Affiliation(s)
- Yikan Zhao
- Department of Environmental Science and Engineering, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Yingxue Sun
- Department of Environmental Science and Engineering, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yuting Han
- Department of Environmental Science and Engineering, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Jiahao Li
- Department of Environmental Science and Engineering, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Ning Ding
- Department of Environmental Science and Engineering, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| | - Toshiyuki Shibata
- Kubota Environmental Engineering (Shanghai) Co., Ltd., Shanghai, 200070, China
| | - Qianyuan Wu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
4
|
Yang Y, Bai W, Gan D, Zhu Y, Li X, Liang C, Xia S. A practical study on the near-zero discharge of rainwater and the collaborative treatment and regeneration of rainwater and sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173137. [PMID: 38740207 DOI: 10.1016/j.scitotenv.2024.173137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Non-conventional water recovery, recycling, and reuse have been considered imperative approaches to addressing water scarcity in China. The objective of this study was to evaluate the technical and economic feasibility of Water Reclamation Plants (WRP) based on an anaerobic-anoxic-oxic membrane bioreactor (A2O-MBR) system for unconventional water resource treatment and reuse in towns (domestic sewage and rainwater). Rainwater is collected and stored in the rainwater reservoir through the rainwater pipe network, and then transported to the WRP for treatment and reuse through the rainwater reuse pumping station during the peak water demand period. During a year of operation and evaluation process, a total of 610,000 cubic meters of rainwater were reused, accounting for 10.4 % of the treated wastewater. In the A2O-MBR operation, the average effluent concentrations for COD (chemical oxygen demand), NH4+-N (ammonium), TN (total nitrogen), and TP (total phosphorus) were 14.23 ± 4.07 mg/L, 0.22 ± 0.26 mg/L, 11.97 ± 1.54 mg/L, and 0.13 ± 0.09 mg/L, respectively. The effluent quality met standards suitable for reuse in industrial cooling water or for direct discharge. The WRP demonstrates a positive financial outlook, with total capital and operating costs totaling 0.16 $/m3. A comprehensive cost-benefit analysis indicates a positive net present value for the WRP, and the estimated annualized net profit is 0.024 $/m3. This research has achieved near-zero discharge of wastewater and effective allocation of rainwater resources across time and space.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenlong Bai
- Inner Mongolia Dongyuan Environmental Protection Technology Co., LTD, Inner Mongolia 014399, China
| | - Defu Gan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuting Zhu
- Tongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chengyu Liang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Wang X, Guo Y, Li Y, Ma Z, Li Q, Wang Q, Xu D, Gao J, Gao X, Sun H. Molecular level unveils anion exchange membrane fouling induced by natural organic matter via XDLVO and molecular simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170272. [PMID: 38266735 DOI: 10.1016/j.scitotenv.2024.170272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Membrane fouling, critically determined by the interplay of interfacial interaction between foulant and membrane, is a critical impediment that limits application extension of electrodialysis (ED) process. In this study, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model and molecular simulation were performed to quantify the interaction energy barrier for revealing anion exchange membranes (AEMs) fouling mechanisms of calcium ions coexisted with natural organic matter (NOM) (sodium alginate, humic acid, and bovine serum albumin). The insight gained from DMol3 module was also utilized to interpret the adhesion process of NOM at the molecular level. The interaction energy suggested that the presence of Ca-NOM complex magnify the adhesion on the surface cavities of AEMs structures. The molecular simulation and XDLVO presented a good agreement in predicting the fouling trajectory based on the experimental findings. The short-path acid-base interaction exerted a predominant influence on exploring the fouling formation process. In addition, the sodium alginate displayed more stable adhesion behavior through calcium ions bridges stimuli than humic acid and bovine serum albumin. In particular, the molecular simulation calculations exhibited a superior level of concurrence with colloid growth of membrane fouling. Combined XDLVO theory with DMol3 model proposed a new approach to understand membrane fouling mechanisms in ED process.
Collapse
Affiliation(s)
- Xiaomeng Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Yanyan Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Yuanxin Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Zhun Ma
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China.
| | - Qing Li
- College of Chemistry and Chemical Engineering, De Zhou University, De Zhou 253023, Shandong, China
| | - Qun Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Dongmei Xu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China.
| | - Jun Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Xueli Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Hui Sun
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
6
|
Carpes VM, Rubert A, Graciola S, Barbosa Brião V, Hemkemeier M. Hybrid electrolysis and membranes system for apple packing houses water treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:677-693. [PMID: 37578882 PMCID: wst_2023_228 DOI: 10.2166/wst.2023.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The apple industry uses high flows of potable quality water to transport and clean the apple, which is regularly contaminated. Thus, it is necessary to implement an efficient water treatment system during the industrial process, providing reductions in the intake and release flows. A hybrid system was developed by applying the electrolytic treatment by electrocoagulation using a batch process (Step 1) and a continuous process (Step 2), followed by a microfiltration membrane separation (MSP) process (Step 3). The optimal conditions for removal of organic matter, chemical oxygen demand, total suspended solids (TSS), turbidity, color, and fungi obtained in Step 1 were a hydraulic detention time of 40 min, stirring at 40 rpm, current density of 20 A/m2, pH of 8.00, and temperature of 10 °C. These findings led to a successful implementation in Step 2, which evolved into Step 3, where tests in the combined continuous electrolytic reactor together with MSP showed significant removal rates, notably reaching up to 54% organic matter (OM) removal, 72% chemical oxygen demand (COD) removal, 83% TSS removal, 92% haze and color removal, and 100% mildew removal. The hybrid system proved to be a promising alternative for implementation in the processing industry, minimizing environmental impacts and costs.
Collapse
Affiliation(s)
- Vanessa Maria Carpes
- Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, CEP 99001-970, Passo Fundo, RS, Brazil E-mail:
| | - Aline Rubert
- Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, CEP 99001-970, Passo Fundo, RS, Brazil
| | - Samarah Graciola
- Undergraduate Program in Chemical Engineering, University of Passo Fundo, BR 285, CEP 99001-970, Passo Fundo, RS, Brazil
| | - Vandré Barbosa Brião
- Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, CEP 99001-970, Passo Fundo, RS, Brazil
| | - Marcelo Hemkemeier
- Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, CEP 99001-970, Passo Fundo, RS, Brazil
| |
Collapse
|
7
|
Elsaid K, Olabi AG, Abdel-Wahab A, Elkamel A, Alami AH, Inayat A, Chae KJ, Abdelkareem MA. Membrane processes for environmental remediation of nanomaterials: Potentials and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162569. [PMID: 36871724 DOI: 10.1016/j.scitotenv.2023.162569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 05/17/2023]
Abstract
Nanomaterials have gained huge attention with their wide range of applications. This is mainly driven by their unique properties. Nanomaterials include nanoparticles, nanotubes, nanofibers, and many other nanoscale structures have been widely assessed for improving the performance in different applications. However, with the wide implementation and utilization of nanomaterials, another challenge is being present when these materials end up in the environment, i.e. air, water, and soil. Environmental remediation of nanomaterials has recently gained attention and is concerned with removing nanomaterials from the environment. Membrane filtration processes have been widely considered a very efficient tool for the environmental remediation of different pollutants. Membranes with their different operating principles from size exclusions as in microfiltration, to ionic exclusion as in reverse osmosis, provide an effective tool for the removal of different types of nanomaterials. This work comprehends, summarizes, and critically discusses the different approaches for the environmental remediation of engineered nanomaterials using membrane filtration processes. Microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) have been shown to effectively remove nanomaterials from the air and aqueous environments. In MF, the adsorption of nanomaterials to membrane material was found to be the main removal mechanism. While in UF and NF, the main mechanism was size exclusion. Membrane fouling, hence requiring proper cleaning or replacement was found to be the major challenge for UF and NF processes. While limited adsorption capacity of nanomaterial along with desorption was found to be the main challenges for MF.
Collapse
Affiliation(s)
- Khaled Elsaid
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - A G Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham B4 7ET, UK
| | - Ahmed Abdel-Wahab
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Ali Elkamel
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Abdul Hai Alami
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abrar Inayat
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, South Korea
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt.
| |
Collapse
|
8
|
Vaishnav S, Saini T, Chauhan A, Gaur GK, Tiwari R, Dutt T, Tarafdar A. Livestock and poultry farm wastewater treatment and its valorization for generating value-added products: Recent updates and way forward. BIORESOURCE TECHNOLOGY 2023; 382:129170. [PMID: 37196748 DOI: 10.1016/j.biortech.2023.129170] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Livestock and poultry wastewater poses a potent risk factor for environmental pollution accelerating disease load and premature deaths. It is characterized by high chemical oxygen demand, biological oxygen demand, suspended solids, heavy metals, pathogens, and antibiotics, among other contaminants. These contaminants have a negative impact on the quality of soil, groundwater, and air, and is a potential hazard to human health. Depending on the specific characteristics of wastewater, such as the type and concentration of pollutants present; several physical, chemical and biological strategies have been developed for wastewater treatment. This review aims at providing comprehensive overview of the profiling of livestock wastewater from the dairy, swine and poultry sub-sectors along with the biological (annamox and genetically modified bacteria) and physico-chemical treatment methodologies, and valorisation for the generation of value-added products such as bioplastics, biofertilizers, biohydrogen and microalgal-microbial fuel cells. Additionally, future perspectives for efficient and sustainable wastewater treatment are contemplated.
Collapse
Affiliation(s)
- Sakshi Vaishnav
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Tapendra Saini
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Anuj Chauhan
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Gyanendra Kumar Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Rupasi Tiwari
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| |
Collapse
|
9
|
Nagalakshmi S, Mohan SM. Enhanced membrane fouling control through self-forming dynamic membrane and sponge-wrapped membrane: A novel membrane bioreactor. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10861. [PMID: 37041739 DOI: 10.1002/wer.10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Membrane technology offers a wide variety of advantages in wastewater treatment, but fouling impedes its widespread applications. Hence, in this study, a novel method was tried to control membrane fouling by combining the self-forming dynamic membrane (SFDM) with a sponge-wrapped membrane bioreactor. The configuration is termed a "Novel-membrane bioreactor" (Novel-MBR). To compare the performance of Novel-MBR, a conventional membrane bioreactor (CMBR) was operated under similar operating conditions. CMBR and Novel-MBR were run consequently for 60 and 150 days, respectively. The Novel-MBR was composed of SFDMs in two compartments before a sponge-wrapped membrane in the membrane compartment. In Novel-MBR, the formation times for SFDMs on coarse (125 μm) and fine (37 μm) pore cloth filers were 43 and 13 min, respectively. The CMBR experienced more frequent fouling; the maximum fouling rate was 5.83 kPa/day. In CMBR, the membrane fouling due to cake layer resistance (6.92 × 1012 m-1 ) was high, and that alone contributed to 84% of fouling. In Novel-MBR, the fouling rate was 0.0266 kPa/day, and the cake layer resistance was 0.329 × 1012 m-1 . Also, the Novel-MBR experienced 21 times less reversible fouling and 36 times less irreversible fouling resistance than the CMBR. In Novel-MBR, the formed SFDM and the sponge wrapped on the membrane helped to reduce both reversible and irreversible fouling. With the modification tried in the present study, the Novel-MBR experienced less fouling, and the maximum transmembrane pressure at the end of 150 days of operation was 4 kPa. PRACTITIONER POINTS: CMBR experienced frequent fouling, and the maximum fouling rate was 5.83 kPa/day. Cake layer resistance was dominant in CMBR and contributed to 84% of fouling. The fouling rate of Novel-MBR at the end of the operation was 0.0266 kPa/day. Novel-MBR is expected to perform for ≈3380 days to reach the maximum TMP of 35 kPa.
Collapse
Affiliation(s)
- S Nagalakshmi
- Department of Civil Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, India
| | - S Mariraj Mohan
- Department of Civil Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, India
| |
Collapse
|