1
|
Lin D, Chen X, Lin X, Zhang C, Liang T, Zheng L, Xu Y, Huang L, Qiao Q, Xiong K. New insight into intestinal toxicity accelerated by aged microplastics with triclosan: Inflammation regulation by gut microbiota-bile acid axis. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138308. [PMID: 40250280 DOI: 10.1016/j.jhazmat.2025.138308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The combined toxic effects of microplastics (MPs) and their carried contaminants on organisms have been widely concerned; however, the health risks and its mechanism of "gut microbiota-host metabolism (bile acids, BA)" remain unknown. Herein, Xenopus tropicalis were exposured to aged polystyrene MPs carried triclosan (aPS+TCS) and single (a)PS-MPs & TCS, respectively. The bioaccumulation of TCS in the gut of X. tropicalis was significantly increased in aPS+TCS group, which was 89 % higher than that of PS+TCS group, causing more severe oxidative stress, inflammation and intestinal barrier disruption (leaky gut). The expressions of TNF-α, IL-6 and IL-10 in aPS+TCS group were enhanced by 276 % and 19 % and decreased by 81 %, respectively, compared to that in PS+TCS group. Moreover, co-exposure to aPS+TCS increased the number of Escherichia coli, and reduced levels of DCA and LCA (secondary BAs). Multiomics analysis further revealed that the intestinal toxicity of aPS+TCS to X. tropicalis was mainly influenced by the gut flora, BA metabolism and inflammation-related pathways. Co-exposure may exacerbate inflammation by increasing the blood levels of lipopolysaccharides and inhibiting secondary BA production, which are regulated by the gut microbiota-bile acid axis. This study provides new insights in the potential mechanisms of intestinal damage from pollutant-loaded aged MPs.
Collapse
Affiliation(s)
- Dawu Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiangyu Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaojun Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaonan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taojie Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangzhou 510006, China.
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Lu Huang
- Instrumental Analysis Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Qingxia Qiao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Kairong Xiong
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Gan H, Jiang Y, Wu L, Zhu B, Ji D, Liu J, Ding Z, Ye X. Long-term and low-dose exposure to triclosan induces POI phenotype in female offspring mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125966. [PMID: 40043874 DOI: 10.1016/j.envpol.2025.125966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/21/2025] [Accepted: 03/02/2025] [Indexed: 03/09/2025]
Abstract
Triclosan (TCS), a typical endocrine disruptor, is widely used as an antibacterial agent in consumer goods. However, there are few studies on the effects of long-term low-dose TCS exposure on ovarian function in F1 female mice. In this paper, F1 female mice were exposed to TCS (0-3000 μg/kg/day) from intrauterine to postnatal day (PND) 91 to investigate its effects on the ovary. The results revealed that the number of total follicles was decreased, while atretic follicles was increased after TCS exposure. At the hormonal level, the secretion of estradiol was reduced, while follicle-stimulating hormone and luteinizing hormone were increased after TCS exposure. Observation of vaginal smear showed that TCS disrupted the estrous cycle of F1 female mice, especially at the dose of 3000 μg/kg/day. Moreover, TCS promoted cell apoptosis by activating the p38-MAPK signaling pathway and oxidative stress in vitro. In addition, analysis of the fecal microbiome and serum metabolomics revealed that exposure to TCS may cause gut microbiota disruption and metabolic abnormalities in F1 female mice. In conclusion, long-term low-dose TCS exposure may induce primary ovarian insufficiency phenotype in F1 female mice via inducing cell apoptosis and disrupting gut microbiota and metabolism.
Collapse
Affiliation(s)
- Hongya Gan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Yan Jiang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Lixiang Wu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Dapeng Ji
- Logistics Management Office, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
3
|
Teixeira NA, Amorim Batista LF, Schneider de Mira P, Scremin Miyazaki DM, Grassi MT, Zawadzki SF, Abate G. Modified vermiculite as a sorbent phase for stir-bar sorptive extraction. Anal Chim Acta 2025; 1347:343798. [PMID: 40024657 DOI: 10.1016/j.aca.2025.343798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The presence of emerging contaminants (ECs) is a cause of great concern nowadays, and they are present at very low concentrations in surface waters, requiring a preconcentration process for their reliable quantification. The technique of Stir-Bar Sorptive Extraction (SBSE) is a valuable tool for achieving this purpose, and different sorbents have been developed to produce the bars. In this sense, we propose the use of the clay mineral vermiculite (Vt), modified with alkylammonium salts, aiming the determination of the ECs: bisphenol A, diclofenac, ibuprofen and triclosan in surface water samples. RESULTS The best conditions for sorption and desorption were: 50.0 mL of sample at pH 4.0, under stirring at 600 rpm (120 min), being the desorption carried out under sonication for 20 min using 500 μL of methanol, and the analytes were determined using LC-DAD. A linear range from 0.50 to 2.50 μg L-1 or from 0.50 to 5.00 μg L-1 and R2 higher than 0.9480 were observed, and attractive real enrichment factors between 116 and 177 times, affording a LOD between 0.11 and 0.33 μg L-1. The method was applied to determine the four ECs in samples of tap, river, and lake waters, presenting recovery results between 42.0 and 128.0 %, and RSD from 0.4 to 19.6 %. The bars prepared using Vt presented good chemical and mechanical resistance, even modified using the alkylammonium salts, permitting them to be employed at least 30 times, without memory effects. SIGNIFICANCE The modified Vt, afforded a simple, low-cost, and attractive alternative to work as a sorbent phase for SBSE technique, presenting very appropriate analytical parameters, even employing LC-DAD. Although the sorbent was applied to a limited number of contaminants, it is probable that other analytes could be successfully determined. It is important to notice that this is the first study reported, employing modified Vt for SBSE application.
Collapse
Affiliation(s)
- Natascha Amalio Teixeira
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | | | - Princys Schneider de Mira
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | | | - Marco Tadeu Grassi
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Sônia Faria Zawadzki
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Gilberto Abate
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
4
|
Itzhari D, Nzeh J, Ronen Z. Resistance and Biodegradation of Triclosan and Propylparaben by Isolated Bacteria from Greywater. J Xenobiot 2025; 15:56. [PMID: 40278161 PMCID: PMC12028367 DOI: 10.3390/jox15020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
We investigated the relationship between antibiotic-resistance genes and the antimicrobial agents, triclosan (TCS) and propylparaben (PPB). The greywater microbiome was repeatedly exposed to triclosan and propylparaben and the effect was analyzed using a combination of PCR, Etest, Biolog, 16S rRNA sequencing, and liquid chromatography. The taxonomic identification points to very similar or even identical isolates, however, the phenotypic analysis suggests that their metabolic potential is different, likely due to genomic variation or differences in the expression of the substrate utilization pathways. For both triclosan and propylparaben, the antibiotic resistance levels among isolates remain consistent regardless of the exposure duration. This suggests that antibiotic-resistance genes are acquired rapidly and that their presence is not directly proportional to the level of micropollutant exposure. In a biodegradation test, TCS was reduced by 50% after 7 h, while PPB decreased only after 75 h. For TCS, the minimal inhibition concentration (MIC) ranged from 64 to above 256 mg/mL. Conversely, for PPB the MIC for the tested strains ranged between 512 and 800 mg/mL. This study highlights the complex interaction between household xenobiotics, greywater microorganisms, and the emergence of antibiotic resistance.
Collapse
Affiliation(s)
| | | | - Zeev Ronen
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beersheba 8499000, Israel; (D.I.); (J.N.)
| |
Collapse
|
5
|
Zhang B, Chen L, Li T. Unveiling the effect of urinary xenoestrogens on chronic kidney disease in adults: A machine learning model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117945. [PMID: 39987685 DOI: 10.1016/j.ecoenv.2025.117945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Exposure to three primary xenoestrogens (XEs), including phthalates, parabens, and phenols, has been strongly associated with chronic kidney disease (CKD). An interpretable machine learning (ML) model was developed to predict CKD using data from the National Health and Nutrition Examination Survey (NHANES) database spanning from 2007 to 2016. Four ML algorithms-random forest classifier (RF), XGBoost (XGB), k-nearest neighbors (KNN), and support vector machine (SVM)-were used alongside traditional logistic regression to predict CKD. The study included 6910 U.S. adults, with XGB showing the highest predictive accuracy, achieving an area under the curve (AUC) of 0.817 (95 % CI: 0.789, 0.844). The selected model was interpreted using Shapley additive explanations (SHAP) and partial dependence plot (PDP). The SHAP method identified key predictive features for CKD in urinary metabolites of XEs-methyl paraben (MeP), mono-(carboxynonyl) phthalate (MCNP), and triclosan (TCS)-and suggested personalized CKD care should focus on XE control. PDP results confirmed that, within certain ranges, MeP levels positively impacted the model, MCNP levels negatively impacted it, and TCS had a mixed effect. The synergistic effects suggested that managing urinary MeP levels could be essential for the effective control of CKD. In summary, our research highlights the significant predictive potential of XEs for CKD, especially MeP, MCNP, and TCS.
Collapse
Affiliation(s)
- Bowen Zhang
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Li
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Zhang L, He Y, Jiang L, Shi Y, Hao L, Huang L, Lyu M, Wang S. Plastic additives as a new threat to the global environment: Research status, remediation strategies and perspectives. ENVIRONMENTAL RESEARCH 2024; 263:120007. [PMID: 39284493 DOI: 10.1016/j.envres.2024.120007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Discharge or leaching of plastic additives, which are an essential part of the plastic production process, can lead to environmental pollution with serious impacts on human and ecosystem health. Recently, the emission of plastic additives is increasing dramatically, but its pollution condition has not received enough attention. Meanwhile, the effective treatment strategy of plastic additive pollution is lack of systematic introduction. Therefore, it is crucial to analyze the harm and pollution status of plastic additives and explore effective pollution control strategies. This paper reviews the latest research progress on additives in plastics, describes the effects of their migration into packaged products and leaching into the environment, presents the hazards of four major classes of plastic additives (i.e., plasticizers, flame retardants, stabilizers, and antimicrobials), summarizes the existing abiotic/biotic strategies for accelerated the remediation of additives, and finally provides perspectives on future research on the removal of plastic additives. To the best of our knowledge, this is the first review that systematically analyzes strategies for the treatment of plastic additives. The study of these strategies could (i) provide feasible, cost-effective abiotic method for the removal of plastic additives, (ii) further enrich the current knowledge on plastic additive bioremediation, and (iii) present application and future development of plants, invertebrates and machine learning in plastic additive remediation.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yuehui He
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lei Jiang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yong Shi
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lijuan Hao
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lirong Huang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
7
|
Xia X, Mu H, Li Y, Hou Y, Li J, Zhao Z, Zhao Q, You S, Wei L. Which emerging micropollutants deserve more attention in wastewater in the post-COVID-19 pandemic period? Based on distribution, risk, and exposure analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175511. [PMID: 39147043 DOI: 10.1016/j.scitotenv.2024.175511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Aggravated accumulation of emerging micropollutants (EMs) in aquatic environments, especially after COVID-19, raised significant attention throughout the world for safety concerns. This article reviews the sources and occurrence of 25 anti-COVID-19 related EMs in wastewater. It should be pointed out that the concentration of anti-COVID-19 related EMs, such as antivirals, plasticizers, antimicrobials, and psychotropic drugs in wastewater increased notably after the pandemic. Furthermore, the ecotoxicity, ecological, and health risks of typical EMs before and after COVID-19 were emphatically compared and analyzed. Based on the environmental health prioritization index method, the priority control sequence of typical EMs related to anti-COVID-19 was identified. Lopinavir (LPV), venlafaxine (VLX), di(2-ethylhexyl) phthalate (DEHP), benzalkonium chloride (BAC), triclocarban (TCC), di-n-butyl phthalate (DBP), citalopram (CIT), diisobutyl phthalate (DIBP), and triclosan (TCS) were identified as the top-priority control EMs in the post-pandemic period. Besides, some insights into the toxicity and risk assessment of EMs were also provided. This review provides direction for proper understanding and controlling the EMs pollution after COVID-19, and is of significance to evaluate objectively the environmental and health impacts induced by COVID-19.
Collapse
Affiliation(s)
- Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huizhi Mu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaqun Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanlong Hou
- The 404 Company Limited, CNNC, Lanzhou 732850, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zixuan Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Dharmalingam K, Thangavel E, Tsai PC, Pham PV, Prakasham K, Andaluri G, Manjappa KB, Lin YC, Ponnusamy VK. Novel MoS 2-In 2O 3-WS 2 (2D/3D/2D) ternary heterostructure nanocomposite material: Efficient photocatalytic degradation of antimicrobial agents under visible-light. ENVIRONMENTAL RESEARCH 2024; 261:119759. [PMID: 39122163 DOI: 10.1016/j.envres.2024.119759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Fabrication of ternary composited photocatalytic nanomaterials with strong interaction is vital to deriving the fast charge separation for efficient photodegradation of organic contaminants in wastewater under visible light. In this work, novel ternary 2D/3D/2D MoS2-In2O3-WS2 multi-nanostructures were synthesized using facile hydrothermal processes. XRD, FTIR, and XPS results confirmed the phase, functional groups, and element composition of pure MoS2, MoS2-In2O3, and MoS2-In2O3-WS2 hybrids. UV-DRS spectra of the MoS2-In2O3-WS2 ternary hybrid indicate maximum absorption in the visible light range with a band-gap energy value of 2.4 eV. The surface of the 2D WS2 nanosheet structure tightly blends and densely disperses 2D MoS2 nanosheets and 3D In2O3 nanocubes. This confirmed the formation of the MoS2-In2O3-WS2 ternary hybrid in the form of 2D/3D/2D multi-nanostructures, which is also indicated from SEM and HR-TEM images. The synthesized MoS2-In2O3-WS2 ternary hybrid showed maximum photocatalytic activity under visible-light for antimicrobial agents such as triclosan (TCS) and trichlorocarban (TCC). The photocatalytic activity of TCS was revealed to be 95% at 90 min, while that of TCC was 93% at 100 min. The reusability and stability tests of the prepared MoS2-In2O3-WS2 ternary hybrid after four consecutive photocatalytic cycles were analyzed by FTIR and SEM, which indicated that the prepared ternary hybrid was very stable. Overall results suggested that the developed MoS2-In2O3-WS2 (2D/3D/2D) multi-nanostructures are environmentally friendly and low-cost nanocomposites as a potential photocatalyst for the removal of antimicrobial agents from wastewater.
Collapse
Affiliation(s)
- Karthigaimuthu Dharmalingam
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan; Smart Energy Materials Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem, India
| | - Elangovan Thangavel
- Smart Energy Materials Research Laboratory, Department of Energy Science and Technology, Periyar University, Salem, India.
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Phuong V Pham
- Department of Physics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Karthikeyan Prakasham
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, United States
| | - Kiran B Manjappa
- Graduate Programme for Biomedical and Materials Science, College of Science, Tunghai University, Taichung City, Taiwan
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
9
|
Wei Z, Ni X, Cui H, Shu C, Peng Y, Li Y, Liu J. Neurotoxic effects of triclosan in adolescent mice: Pyruvate kinase M2 dimer regulated Signal transducer and activator of transcription 3 phosphorylation mediated microglia activation and neuroinflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173739. [PMID: 38839007 DOI: 10.1016/j.scitotenv.2024.173739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Triclosan (TCS), a commonly used antibacterial agent, is associated with various harmful effects on mammalian neurodevelopment, particularly when exposed prenatally. This study investigated the impact of long-term exposure to TCS on the prefrontal cortex development in adolescent mice. We evaluated the motor ability, motor coordination, and anxiety behavior of mice using open field tests (OFT) and elevated cross maze tests (EPM). An increase in movement distance, number of passes through the central area, and open arm retention time was observed in mice treated with TCS. Hematoxylin eosin staining and Nissl staining also showed significant adverse reactions in the brain tissue of TCS-exposed group. TCS induced microglia activation and increased inflammatory factors expression in the prefrontal cortex. TCS also increased the expression of pyruvate kinase M2 (PKM2), thereby elevating the levels of PKM2 dimer, which entered the nucleus. Treatment with TEPP46 (PKM2 dimer nuclear translocation inhibitor) blocked the expression of inflammatory factors induced by TCS. TCS induced the phosphorylation of nuclear signal transducer and activator of transcription 3 (STAT3) in vivo and in vitro, upregulating the levels of inflammatory cytokines. The results also demonstrated the binding of PKM2 to STAT3, which promoted STAT3 phosphorylation at the Tyr705 site, thereby regulating the expression of inflammatory factors. These findings highlight the role of PKM2-regulated STAT3 phosphorylation in TCS-induced behavioral disorders in adolescents and propose a reliable treatment target for TCS.
Collapse
Affiliation(s)
- Ziyun Wei
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiao Ni
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - He Cui
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Chang Shu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yuxuan Peng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yunwei Li
- Department of General Surgery, Colorectal Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China.
| | - Jieyu Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
10
|
Lin D, Cen Z, Zhang C, Lin X, Liang T, Xu Y, Zheng L, Qiao Q, Huang L, Xiong K. Triclosan-loaded aged microplastics exacerbate oxidative stress and neurotoxicity in Xenopus tropicalis tadpoles via increased bioaccumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173457. [PMID: 38782285 DOI: 10.1016/j.scitotenv.2024.173457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Microplastics and chlorine-containing triclosan (TCS) are widespread in aquatic environments and may pose health risks to organisms. However, studies on the combined toxicity of aged microplastics and TCS are limited. To investigate the toxic effects and potential mechanisms associated with co-exposure to TCS adsorbed on aged polyethylene microplastics (aPE-MPs) at environmentally relevant concentrations, a 7-day chronic exposure experiment was conducted using Xenopus tropicalis tadpoles. The results showed that the overall particle size of aPE-MPs decreased after 30 days of UV aging, whereas the increase in specific surface area improved the adsorption capacity of aPE-MPs for TCS, resulting in the bioaccumulation of TCS under dual-exposure conditions in the order of aPE-TCS > PE-TCS > TCS. Co-exposure to aPE-MPs and TCS exacerbated oxidative stress and neurotoxicity to a greater extent than a single exposure. Significant upregulation of pro-symptomatic factors (IL-β and IL-6) and antioxidant enzyme activities (SOD and CAT) indicated that the aPE-TCS combination caused more severe oxidative stress and inflammation. Molecular docking revealed the molecular mechanism of the direct interaction between TCS and SOD, CAT, and AChE proteins, which explains why aPE-MPs promote the bioaccumulation of TCS, causing increased toxicity upon combined exposure. These results emphasize the need to be aware of the combined toxicity caused by the increased ability of aged microplastics to carry contaminants.
Collapse
Affiliation(s)
- Dawu Lin
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zifeng Cen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaonan Zhang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaojun Lin
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taojie Liang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Li Zheng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Qingxia Qiao
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Lu Huang
- Instrumental Analysis Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kairong Xiong
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Xu J, Bian J, Ge Y, Chen X, Lu B, Liao J, Xie Q, Zhang B, Sui Y, Yuan C, Lu S. Parabens and triclosan in red swamp crayfish (Procambarus clarkii) from China: Concentrations, tissue distribution and related human dietary intake risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173130. [PMID: 38734109 DOI: 10.1016/j.scitotenv.2024.173130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Parabens (PBs) and triclosan (TCS) are commonly found in pharmaceuticals and personal care products (PPCPs). As a result, they have been extensively found in the environment, particularly in aquaculture operations. Red swamp crayfish (Procambarus clarkii) consumption has significantly risen in China. Nevertheless, the levels of PBs and TCS in this species and the associated risk to human dietary intake remain undisclosed. This study assessed the amounts of five PBs, i.e., methyl-paraben (MeP), ethyl-paraben (EtP), propyl-paraben (PrP), butyl-paraben (BuP) and benzyl-paraben (BzP), as well as TCS in crayfish taken from five provinces of the middle-lower Yangtze River. MeP, PrP and TCS showed the highest detection rates (hepatopancreas: 46-86 %; muscle: 63-77 %) since they are commonly used in PPCPs. Significantly higher levels of ∑5PBs (median: 3.69 ng/g) and TCS (median: 7.27 ng/g) were significantly found in the hepatopancreas compared to the muscle (median: 0.39 ng/g for ∑5PBs and 0.16 ng/g for TCS) (p < 0.05), indicating bioaccumulation of these chemicals in the hepatopancreas. The estimated daily intake values of ∑5PBs and TCS calculated from the median concentrations of crayfish were 6.44-7.94 ng/kg bw/day and 11.4-14.0 ng/kg bw/day, respectively. Although no health risk was predicted from consuming crayfish (HQ <1), consumption of the hepatopancreas is not recommended.
Collapse
Affiliation(s)
- Jiayi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Junye Bian
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Xulong Chen
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Bingjun Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Jianfang Liao
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Qingyuan Xie
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Beining Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Yaotong Sui
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Chenghan Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China.
| |
Collapse
|
12
|
Alsiary WA, Madany MMY, AbdElgawad H. The pleiotropic role of Salinicoccus bacteria in enhancing ROS homeostasis and detoxification metabolism in soybean and oat to cope with pollution of triclosan. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108327. [PMID: 38271860 DOI: 10.1016/j.plaphy.2023.108327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024]
Abstract
Triclosan has been extensively used as a preservative in cosmetics and personal care products. However, its accumulation represents a real environmental threat. Thus, its phytotoxic impact needs more consideration. Our study was conducted to highlight the phytotoxic effect of triclosan on the growth, ROS homeostasis, and detoxification metabolism of two different plant species i.e., legumes (Glycine max) and grass (Avena sativa). Moreover, we investigated the potentiality of plant growth-promoting bacteria (ST-PGPB) in mitigating the phytotoxic effect of triclosan. Triclosan induced biomass (fresh and dry weights) reduction in both plants, but to a higher extent in oats. This decline was associated with a noticeable increment in the oxidative damage (e.g., MDA and H2O2) and detoxification metabolites such as metallothionein (MTC), phytochelatins (PCs), and glutathione-S-transferase (GST). This elevation was associated with a remarkable reduction in both enzymatic and non-enzymatic antioxidants. On the other hand, the bioactive strain of ST-PGPB, Salinicoccus sp. JzA1 significantly alleviated the harmful effect of triclosan on both soybean and oat plants by enhancing their biomass, photosynthesis, as well as levels of minerals (K, Ca, P, Mn, and Zn). In parallel, a striking quenching in oxidative damage and an obvious improvement in non-enzymatic (polyphenols, tocopherols, flavonoids) and enzymatic antioxidants were observed. Furthermore, Salinicoccus sp. JzA1 augmented the detoxification metabolism by enhancing the levels of phytochelatins, metallothionein, and glutathione-S-transferase (GST) activity in a species-specific manner which is more apparent in soybean rather than in oat plants. To this end, stress mitigating impact of Salinicoccus sp. JzA1 provides a basis to improve the resilience of crop species under cosmetics and personal care products toxicity.
Collapse
Affiliation(s)
- Waleed A Alsiary
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21441, Saudi Arabia
| | - Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt; Biology Department, College of Science, Taibah University, Al-Madinah Al-Munawwarah 41411, Saudi Arabia.
| | - Hamada AbdElgawad
- Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
13
|
Chen J, Zhang B, Wang C, Wang P, Cui G, Gao H, Feng B, Zhang J. Insight into the enhancement effect of humic acid on microbial degradation of triclosan in anaerobic sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132549. [PMID: 37717441 DOI: 10.1016/j.jhazmat.2023.132549] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Humic acid (HA) as one class of macromolecular substances plays important roles in mediating environmental behaviors of pollutants in sediments, but its effect on microbial degradation of triclosan (TCS), a common antibacterial drug, remains unclear. In this study, the effects of HA addition with different dosages (0-5%) on TCS degradation in anaerobic sediment slurries and the underlying microbial mechanisms were investigated. The results showed that HA addition significantly accelerated the TCS removal and the maximum removal percentage (30.2%) was observed in the sediment slurry with 5% HA addition. The iron reduction rate, relative abundances of the genera Comamonas, Pseudomonas and Geobacter, and bacterial network complexity in sediment slurry were significantly enhanced due to HA addition. Based on the partial least squares path modeling analysis, the enhancement effect of HA on TCS degradation was mainly explained by Fe(II):Fe(III) ratio with the highest influence on TCS removal (total effect: 0.723), followed by dominant genera abundances (total effect: 0.391), module relative abundance (total effect: 0.272), and network topological features (total effect: 0.263). This finding enhanced our understanding of the role of HA in TCS biodegradation in contaminated sediments for bioremediation purposes.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Ge Cui
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
14
|
Yu Z, Han J, Li L, Zhang Q, Chen A, Chen J, Wang K, Jin J, Li H, Chen G. Chronic triclosan exposure induce impaired glucose tolerance by altering the gut microbiota. Food Chem Toxicol 2024; 183:114305. [PMID: 38052405 DOI: 10.1016/j.fct.2023.114305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Triclosan (TCS) is an antimicrobial compound incorporated into more than 2000 consumer products. This compound is frequently detected in the human body and causes ubiquitous contamination in the environment, thereby raising concerns about its impact on human health and environmental pollution. Here, we demonstrated that 20 weeks' exposure of TCS drove the development of glucose intolerance by inducing compositional and functional alterations in intestinal microbiota in rats. Fecal-transplantation experiments corroborated the involvement of gut microbiota in TCS-induced glucose-tolerance impairment. 16S rRNA gene-sequencing analysis of cecal contents showed that TCS disrupted the gut microbiota composition in rats and increased the ratio of Firmicutes to Bacteroidetes. Cecal metabolomic analyses detected that TCS altered host metabolic pathways that are linked to host glucose and amino acid metabolism, particularly branched-chain amino acid (BCAA) biosynthesis. BCAA measurement confirmed the increase in serum BCAAs in rats exposed to TCS. Western blot and immunostaining results further confirmed that elevated BCAAs stimulated mTOR, a nutrient-sensing complex, and following IRS-1 serine phosphorylation, resulted in insulin resistance and glucose intolerance. These results suggested that TCS may induce glucose metabolism imbalance by regulating BCAA concentration by remodeling the gut microbiota.
Collapse
Affiliation(s)
- Zhen Yu
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Junyong Han
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Lisha Li
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Qiufeng Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Ayun Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Jinyan Chen
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Kun Wang
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Jingjun Jin
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Gang Chen
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
15
|
Ryva BA, Pacyga DC, Anderson KY, Calafat AM, Whalen J, Aung MT, Gardiner JC, Braun JM, Schantz SL, Strakovsky RS. Associations of urinary non-persistent endocrine disrupting chemical biomarkers with early-to-mid pregnancy plasma sex-steroid and thyroid hormones. ENVIRONMENT INTERNATIONAL 2024; 183:108433. [PMID: 38219543 PMCID: PMC10858740 DOI: 10.1016/j.envint.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND/OBJECTIVES Pregnant women are exposed to numerous endocrine disrupting chemicals (EDCs) that can affect hormonal pathways regulating pregnancy outcomes and fetal development. Thus, we evaluated overall and fetal sex-specific associations of phthalate/replacement, paraben, and phenol biomarkers with sex-steroid and thyroid hormones. METHODS Illinois women (n = 302) provided plasma for progesterone, estradiol, testosterone, free T4 (FT4), total T4 (TT4), and thyroid stimulating hormone (TSH) at median 17 weeks gestation. Women also provided up-to-five first-morning urine samples monthly across pregnancy (8-40 weeks), which we pooled to measure 19 phthalate/replacement metabolites (reflecting ten parent compounds), three parabens, and six phenols. We used linear regression to evaluate overall and fetal sex-specific associations of biomarkers with hormones, as well as weighted quantile sum and Bayesian kernel machine regression (BKMR) to assess cumulative associations, non-linearities, and chemical interactions. RESULTS In women of relatively high socioeconomic status, several EDC biomarkers were associated with select hormones, without cumulative or non-linear associations with progesterone, FT4, or TT4. The biomarker mixture was negatively associated with estradiol (only at higher biomarker concentrations using BKMR), testosterone, and TSH, where each 10% mixture increase was associated with -5.65% (95% CI: -9.79, -1.28) lower testosterone and -0.09 μIU/mL (95% CI: -0.20, 0.00) lower TSH. Associations with progesterone, testosterone, and FT4 did not differ by fetal sex. However, in women carrying females, we identified an inverted u-shaped relationship of the mixture with estradiol. Additionally, in women carrying females, each 10% increase in the mixture was associated with 1.50% (95% CI: -0.15, 3.18) higher TT4, whereas in women carrying males, the mixture was associated with -1.77% (95% CI: -4.08, 0.58) lower TT4 and -0.18 μIU/mL (95% CI: -0.33, -0.03) lower TSH. We also identified select chemical interactions. CONCLUSION Some biomarkers were associated with early-to-mid pregnancy hormones. There were some sex-specific and non-linear associations. Future studies could consider how these findings relate to pregnancy/birth outcomes.
Collapse
Affiliation(s)
- Brad A Ryva
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States; College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Diana C Pacyga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States; Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States
| | - Kaitlyn Y Anderson
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, United States
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, United States
| | - Jason Whalen
- Michigan Diabetes Research Center Chemistry Laboratory, University of Michigan, Ann Arbor, MI 48109, United States
| | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Joseph C Gardiner
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, United States
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI 02912, United States
| | - Susan L Schantz
- The Beckman Institute, University of Illinois, Urbana-Champaign, IL 61801, United States; Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL 61802, United States
| | - Rita S Strakovsky
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States; Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
16
|
Chen SL, Wang TY, Tang CC, Wang R, He ZW, Li ZH, Tian Y, Wang XC. Revealing mechanisms of triclosan on the removal and distribution of nitrogen and phosphorus in microalgal-bacterial symbiosis system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122539. [PMID: 37699452 DOI: 10.1016/j.envpol.2023.122539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023]
Abstract
Microalgal-bacterial symbiosis (MABS) system performs synergistic effect on the reduction of nutrients and carbon emissions in the water treatment process. However, antimicrobial agents are frequently detected in water, which influence the performance of MABS system. In this study, triclosan (TCS) was selected to reveal the effects and mechanisms of antimicrobial agents on MABS system. Results showed that the removal efficiencies of chemical oxygen demand, NH4+-N and total phosphorus decreased by 3.0%, 24.0% and 14.3% under TCS stress. In contrast, there were no significant decrease on the removal effect of total nitrogen. Mechanism analysis showed that both the growth rate of microorganisms and the nutrients retention capacity of extracellular polymeric substances were decreased. The intracellular accumulation for nitrogen and phosphorus was promoted due to the increased cytomembrane permeability caused by lipid peroxidation. Moreover, microalgae were dominant in MABS system with ratio between microalgae and bacteria of more than 5.49. The main genus was Parachlorella, with abundance of more than 90%. Parachlorella was highly tolerant to TCS, which might be conductive to maintain its survival. This study revealed the nutrients pathways of MABS system under TCS stress, and helped to optimize the operation of MABS system.
Collapse
Affiliation(s)
- Sheng-Long Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tian-Yang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Rong Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhi-Hua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaochang C Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| |
Collapse
|