1
|
Nguyen NT, Lin AB, Chang CT, Hong GB. Bimetallic Zinc-Iron-Modified Sugarcane Bagasse Biochar for Simultaneous Adsorption of Arsenic and Oxytetracycline from Wastewater. Molecules 2025; 30:572. [PMID: 39942676 PMCID: PMC11820934 DOI: 10.3390/molecules30030572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Arsenic (As), a highly toxic and carcinogenic heavy metal, poses significant risks to soil and water quality, while oxytetracycline (OTC), a widely used antibiotic, contributes to environmental pollution due to excessive human usage. Addressing the coexistence of multiple pollutants in the environment, this study investigates the simultaneous adsorption of As(III) and OTC using a novel bimetallic zinc-iron-modified biochar (1Zn-1Fe-1SBC). The developed adsorbent demonstrates enhanced recovery, improved adsorption efficiency, and cost-effective operation. Characterization results revealed a high carbon-to-hydrogen ratio (C/H) and a specific surface area of 1137 m2 g-1 for 1Zn-1Fe-1SBC. Isotherm modeling indicated maximum adsorption capacities of 34.7 mg g-1 for As(III) and 172.4 mg g-1 for OTC. Thermodynamic analysis confirmed that the adsorption processes for both pollutants were spontaneous (ΔG < 0), endothermic (ΔH > 0), and driven by chemical adsorption (ΔH > 80 kJ mol-1), with increased system disorder (ΔS > 0). The adsorption mechanisms involved multiple interactions, including pore filling, hydrogen bonding, electrostatic attraction, complexation, and π-π interactions. These findings underscore the potential of 1Zn-1Fe-1SBC as a promising adsorbent for the remediation of wastewater containing coexisting pollutants.
Collapse
Affiliation(s)
- Nhat-Thien Nguyen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei City 106, Taiwan;
| | - An-Bang Lin
- Department of Environmental Engineering, National Ilan University, Yilan City 26047, Taiwan;
| | - Chang-Tang Chang
- Department of Environmental Engineering, National Ilan University, Yilan City 26047, Taiwan;
| | - Gui-Bing Hong
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei City 106, Taiwan;
| |
Collapse
|
2
|
Firrman J, Narrowe A, Liu L, Mahalak K, Lemons J, Van den Abbeele P, Baudot A, Deyaert S, Li Y, Yao Y, Yu L. Tomato seed extract promotes health of the gut microbiota and demonstrates a potential new way to valorize tomato waste. PLoS One 2024; 19:e0301381. [PMID: 38625903 PMCID: PMC11020900 DOI: 10.1371/journal.pone.0301381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/14/2024] [Indexed: 04/18/2024] Open
Abstract
The current effort to valorize waste byproducts to increase sustainability and reduce agricultural loss has stimulated interest in potential utilization of waste components as health-promoting supplements. Tomato seeds are often discarded in tomato pomace, a byproduct of tomato processing, yet these seeds are known to contain an array of compounds with biological activity and prebiotic potential. Here, extract from tomato seeds (TSE), acquired from pomace, was evaluated for their ability to effect changes on the gut microbiota using an ex vivo strategy. The results found that TSE significantly increased levels of the beneficial taxa Bifidobacteriaceae in a donor-independent manner, from a range of 18.6-24.0% to 27.0-51.6% relative abundance following treatment, yet the specific strain of Bifidobacteriaceae enhanced was inter-individually variable. These structural changes corresponded with a significant increase in total short-chain fatty acids, specifically acetate and propionate, from an average of 13.3 to 22.8 mmol/L and 4.6 to 7.4 mmol/L, respectively. Together, these results demonstrated that TSE has prebiotic potential by shaping the gut microbiota in a donor-independent manner that may be beneficial to human health. These findings provide a novel application for TSE harvested from tomato pomace and demonstrate the potential to further valorize tomato waste products.
Collapse
Affiliation(s)
- Jenni Firrman
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, Pennsylvania, United States of America
| | - Adrienne Narrowe
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, Pennsylvania, United States of America
| | - LinShu Liu
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, Pennsylvania, United States of America
| | - Karley Mahalak
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, Pennsylvania, United States of America
| | - Johanna Lemons
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, Pennsylvania, United States of America
| | | | | | | | - Yanfang Li
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, United States of America
| | - Yuanhang Yao
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, United States of America
| | - Liangli Yu
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
3
|
Behera AK, Shadangi KP, Sarangi PK. Efficient removal of Rhodamine B dye using biochar as an adsorbent: Study the performance, kinetics, thermodynamics, adsorption isotherms and its reusability. CHEMOSPHERE 2024; 354:141702. [PMID: 38490618 DOI: 10.1016/j.chemosphere.2024.141702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Removal of toxic dyes such as Rhodamine B is essential as it pollutes aqueous and soil streams as well. This comprehensive study explores the potential of Calophyllum inophyllum seed char as an efficient bio-adsorbent based on their characteristic properties and a comparative study between various carbon-based adsorbents on the adsorption capacity of Rhodamine B dye. In this study, the char was prepared from Calophyllum inophyllum seed using a slow pyrolysis process (298 K/min) at an optimum temperature of 823 K and used as an adsorbent for the removal of Rhodamine B from water. The resulting char was mesoporous and had 155.389 m2/g surface areas (BET) and 0.628 cc/g pore volume. The formation of pores was observed from the SEM analysis. The adsorption studies were tested and optimized through various parameters such as solution pH, adsorbent dosage, initial dye concentration, stirring speed, contact time, and solution temperature. Maximum 95.5 % removal of Rhodamine B was possible at the pH: 2, stirring speed: 100 rpm, time: 25 min, temperature 308 K, and dose: 1.2 g/L. The highest adsorption capacity at equilibrium was determined to be 169.5 (mg/g) through Langmuir adsorption isotherm studies and followed pseudo 2nd order kinetics. The thermodynamics study confirmed the adsorption processes were spontaneous (ΔG°=-0.735 kJ/mol) and endothermic (ΔH° = 4.1 kJ/mol) processes. The reusability study confirmed that the mesoporous char can be reused as an efficient adsorbent for up to 3 cycles for environmental remediation.
Collapse
Affiliation(s)
- Amit Kumar Behera
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768017, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768017, India.
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, Manipur 795004, India
| |
Collapse
|
4
|
Wolffers M, Kulik DA, Miron GD, Eggenberger U, Churakov SV. Thermodynamic model of MSWI flue gas cooling path: Effect of flue gas composition on heavy metal binding forms. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:273-284. [PMID: 37313852 DOI: 10.1177/0734242x231178213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the context of circular economy and heavy metal (HM) recovery from municipal solid waste incineration (MSWI) fly ash (FA), detailed knowledge of HM binding forms is required for achieving higher extraction rates. The FA mineralogy is still poorly understood due to its low grain size and low metal concentration. To investigate the HM binding forms, a sophisticated thermodynamic reactive transport model was developed to simulate ash-forming processes. The stability of different binding forms was investigated at different flue gas conditions (varying ratios of HCl, SO2, O2) by simulating the gas cooling path in closed system and dynamic open system, where the gas composition is changing upon cooling due to precipitation of solids. The simulations predict that at flue gas conditions of molar ratio S/Cl < 1, Cu and Zn precipitate as oxides (and Zn silicates) at approximately 650°C. At temperatures <300°C, Zn, Cu, Pb and Cd are predicted to precipitate as easily soluble chlorides. In flue gas with molar ratio S/Cl > 1, the HM precipitate as less soluble sulphates. The results indicate that the less soluble HM fraction in the electrostatic precipitator ash represent oxides and silicates that formed in the boiler section but were transported to the electrostatic precipitator. The model provides insight into the physical-chemical processes controlling the metal accumulation in the flue gas and FA during the cooling of the flue gas. The obtained data serve as valuable basis for improving metal recovery from MSWI FA.
Collapse
Affiliation(s)
- Mirjam Wolffers
- Institute of Geological Sciences, University of Bern, Bern, Switzerland
| | - Dmitrii A Kulik
- Laboratory for Waste Management, Paul Scherrer Institute, Villigen, Switzerland
| | - George-Dan Miron
- Laboratory for Waste Management, Paul Scherrer Institute, Villigen, Switzerland
| | - Urs Eggenberger
- Institute of Geological Sciences, University of Bern, Bern, Switzerland
| | - Sergey V Churakov
- Institute of Geological Sciences, University of Bern, Bern, Switzerland
- Laboratory for Waste Management, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
5
|
Igwegbe CA, Kozłowski M, Wąsowicz J, Pęczek E, Białowiec A. Nitrogen Removal from Landfill Leachate Using Biochar Derived from Wheat Straw. MATERIALS (BASEL, SWITZERLAND) 2024; 17:928. [PMID: 38399179 PMCID: PMC10890371 DOI: 10.3390/ma17040928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Landfill leachate (LLCH) disposal poses challenges due to high pollutant concentrations. This study investigates the use of biochar (BC) derived from wheat straw for nitrogen content reduction. Laboratory experiments evaluated BC's adsorption capacity (qm) for nitrogen removal from ammonium chloride solution (NH4Cl) and LLCH, along with testing isotherm models. The results demonstrated that BC was more efficient (95.08%) than commercial activated carbon AC (93.11%), the blank, in adsorbing nitrogen from NH4Cl. This superior performance of BC may be attributed to its higher carbon content (57.74%) observed through elemental analysis. Lower results for BC/LLCH may be due to LLCH's complex chemical matrix. The Langmuir isotherm model best described BC/NH4Cl adsorption (qm = 0.5738 mg/g). The AC/NH4Cl data also fitted into the Langmuir (R2 ˃ 0.9) with a qm of 0.9469 mg/g, and 26.667 mg/g (R2 ˂ 0.9) was obtained for BC/LLCH; the BC/LLCH also gave higher qm (R2 ˃ 0.9) using the Jovanovich model (which also follows Langmuir's assumptions). The mean energy of the adsorption values estimated for the AC/NH4Cl, BC/NH4Cl, and BC/LLCH processes were 353.55, 353.55, and 223.61 kJ/mol, respectively, suggesting that they are all chemisorption processes and ion exchange influenced their adsorption processes. The Freundlich constant (1/n) value suggests average adsorption for BC/LLCH. The BC/LLCH data followed the Harkins-Jura model (R2: 0.9992), suggesting multilayered adsorption (or mesopore filling). In conclusion, biochar derived from wheat straw shows promising potential for landfill leachate remediation, offering efficient nitrogen removal capabilities and demonstrating compatibility with various adsorption models. This research also lays the groundwork for further exploration of other biochar-based materials in addressing environmental challenges associated with landfill leachate contamination.
Collapse
Affiliation(s)
- Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37A Str., 51-630 Wroclaw, Poland; (C.A.I.); (J.W.); (E.P.); (A.B.)
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka 420218, Nigeria
| | - Michał Kozłowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37A Str., 51-630 Wroclaw, Poland; (C.A.I.); (J.W.); (E.P.); (A.B.)
| | - Jagoda Wąsowicz
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37A Str., 51-630 Wroclaw, Poland; (C.A.I.); (J.W.); (E.P.); (A.B.)
| | - Edyta Pęczek
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37A Str., 51-630 Wroclaw, Poland; (C.A.I.); (J.W.); (E.P.); (A.B.)
- Selena Industrial Technologies sp. z o.o., Pieszycka 3 Str., 58-200 Dzierżoniów, Poland
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37A Str., 51-630 Wroclaw, Poland; (C.A.I.); (J.W.); (E.P.); (A.B.)
| |
Collapse
|
6
|
Papamichael I, Voukkali I, Economou F, Loizia P, Demetriou G, Esposito M, Naddeo V, Liscio MC, Sospiro P, Zorpas AA. Mobilisation of textile waste to recover high added value products and energy for the transition to circular economy. ENVIRONMENTAL RESEARCH 2024; 242:117716. [PMID: 37995999 DOI: 10.1016/j.envres.2023.117716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The textile industry is a major contributor to global waste, with millions of tons of textiles being discarded annually. Material and energy recovery within circular economy offer sustainable solutions to this problem by extending the life cycle of textiles through repurposing, recycling, and upcycling. These initiatives not only reduce waste but also contribute to the reduction of the demand for virgin materials (i.e. cotton, wool), ultimately benefiting the environment and society. The circular economy approach, which aims to recreate environmental, economic, and societal value, is based on three key principles: waste reduction, material circulation, and ecological restoration. Given these difficulties, circularity incorporates the material recovery approach, which is focused on the conversion of waste into secondary raw resources. The goal of this notion is to extract more value from resources by prolonging final disposal as long as feasible. When a textile has outlived its functional life, material recovery is critical for returning the included materials or energy into the manufacturing cycle. The aim of this paper is to examine the material and energy recovery options of main raw materials used in the fashion industry while highlighting the need of close observation of the relation between circularity and material recovery, including the investigation of barriers to the transition towards a truly circular fashion industry. The final results refer to the main barriers of circular economy transition within the industry and a framework is proposed. These insights are useful for academia, engineers, policy makers and other key stakeholders for the clear understanding of the industry from within and highlight beyond circular economy targets, SDGs interactions with energy and material recovery of textile waste (SDG 7, SDG 11, SDG 12 etc.).
Collapse
Affiliation(s)
- Iliana Papamichael
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus. Giannou Kranidioti 89, Latsia, Nicosia, 2231, Cyprus.
| | - Irene Voukkali
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus. Giannou Kranidioti 89, Latsia, Nicosia, 2231, Cyprus.
| | - Florentios Economou
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus. Giannou Kranidioti 89, Latsia, Nicosia, 2231, Cyprus.
| | - Pantelitsa Loizia
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus. Giannou Kranidioti 89, Latsia, Nicosia, 2231, Cyprus
| | - Giorgos Demetriou
- École des Ponts Business School, Circular Economy Research Center, 6 Place du Colonel Bourgoin, 75012, Paris, France.
| | - Mark Esposito
- Hult International Business School, 1 Education St, Cambridge, MA, 02141, United States; Harvard University. Division of Continuing Education 51, Brattle Street Cambridge, MA, 02138, United States.
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, 84084, Fisciano, SA, Italy.
| | - Marco Ciro Liscio
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, Ancona, Marche, 60131, Italy.
| | - Paolo Sospiro
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, Ancona, Marche, 60131, Italy; EUAbout, Bruxelles, Bruxelles, 1000, Belgium.
| | - Antonis A Zorpas
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus. Giannou Kranidioti 89, Latsia, Nicosia, 2231, Cyprus.
| |
Collapse
|