1
|
García-Garcinuño R, Marcé RM, Vallecillos L, Borrull F. Passive sampling of high production volume chemicals and polycyclic aromatic hydrocarbons in urban atmospheres near petrochemical sites: Uptake rate determination and application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124697. [PMID: 39122175 DOI: 10.1016/j.envpol.2024.124697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This study describes the use of passive sampling followed by pressurised liquid extraction and gas chromatography-mass spectrometry for monitoring high production volume chemicals (HPVCs), such as benzothiazoles, benzesulfonamides, phthalate esters (PAEs), organophosphate esters, ultraviolet stabilizers, and phenolic antioxidants and polycyclic aromatic hydrocarbons (PAHs) in urban atmospheres close to a petrochemical area. To obtain accurate results when applying passive sampling, the uptake rates of each target compound for the sampling time applied must be known. Firstly, passive sampling was calibrated for two months and uptake rates of HPVCs and PAHs in an urban atmosphere determined using active sampling as the reference method. The obtained results showed experimental diffusive uptake rates between 1.6 m3 day-1 and 27 m3 day-1 for 32 of the target compounds that will allow enable cost-effective long-term monitoring campaigns of HPVCs to be performed. Secondly, the experimentally obtained uptake rates were used to monitor the concentrations of HPVCs and PAHs at six urban sampling sites close to the two petrochemicals parks in Tarragona (Spain) during a period the two months. Regardless of the sampling campaign, PAEs and PAHs were the families of compounds found at the highest concentration levels, with a sum of their mean values of 23 ng m-3 and 20 ng m-3, respectively.
Collapse
Affiliation(s)
- Reyes García-Garcinuño
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| | - Rosa Maria Marcé
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| | - Laura Vallecillos
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain.
| | - Francesc Borrull
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| |
Collapse
|
2
|
García-Garcinuño R, Vallecillos L, Marcé RM, Borrull F. Occurrence of high production volume chemicals and polycyclic aromatic hydrocarbons in urban sites close to industrial areas. Human exposure and risk assessment. CHEMOSPHERE 2024; 351:141167. [PMID: 38218240 DOI: 10.1016/j.chemosphere.2024.141167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Evaluating the occurrence of high production volume chemicals (HPVCs) and polycyclic aromatic hydrocarbons (PAHs) in the air is important because they carry a carcinogenic risk and can lead to respiratory or endocrine problems. Examples of HPVCs are organophosphate esters, benzosulfonamides, benzothiazoles, phthalate esters (PAEs), phenolic antioxidants and ultraviolet stabilizers. In this paper we develop a multi-residue method for determining HPVCs and PAHs in air samples via pressurized liquid extraction followed by gas chromatography-mass spectrometry. Air samples were collected by active sampling with high volume samplers using quartz fiber filter for the particulate matter (PM10) and polyurethane foams for gas phase. The compounds found at the highest concentrations were PAEs, with a concentration of up to 24 ng m-3 of DEHP in gas phase and up to 109 ng m-3 of DEHA in PM10. Non-carcinogenic risk assessment results ranged from 9.7E-05 to 9.5E-03 for most of the compounds studied. On the other hand, the results for carcinogenic risk showed that PAHs made the highest contribution.
Collapse
Affiliation(s)
- Reyes García-Garcinuño
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| | - Laura Vallecillos
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| | - Rosa Maria Marcé
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain.
| | - Francesc Borrull
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| |
Collapse
|
3
|
Goldblatt R, Holz N, Tate G, Sherman K, Ghebremicael S, Bhuyan SS, Al-Ajlouni Y, Santillanes S, Araya G, Abad S, Herting MM, Thompson W, Thapaliya B, Sapkota R, Xu J, Liu J, Schumann G, Calhoun VD. "Urban-Satellite" estimates in the ABCD Study: Linking Neuroimaging and Mental Health to Satellite Imagery Measurements of Macro Environmental Factors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.06.23298044. [PMID: 37986844 PMCID: PMC10659457 DOI: 10.1101/2023.11.06.23298044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
While numerous studies over the last decade have highlighted the important influence of environmental factors on mental health, globally applicable data on physical surroundings are still limited. Access to such data and the possibility to link them to epidemiological studies is critical to unlocking the relationship of environment, brain and behaviour and promoting positive future mental health outcomes. The Adolescent Brain Cognitive Development (ABCD) Study is the largest ongoing longitudinal and observational study exploring brain development and child health among children from 21 sites across the United States. Here we describe the linking of the ABCD study data with satellite-based "Urban-Satellite" (UrbanSat) variables consisting of 11 satellite-data derived environmental indicators associated with each subject's residential address at their baseline visit, including land cover and land use, nighttime lights, and population characteristics. We present these UrbanSat variables and provide a review of the current literature that links environmental indicators with mental health, as well as key aspects that must be considered when using satellite data for mental health research. We also highlight and discuss significant links of the satellite data variables to the default mode network clustering coefficient and cognition. This comprehensive dataset provides the foundation for large-scale environmental epidemiology research.
Collapse
Affiliation(s)
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Garrett Tate
- New Light Technologies, Inc., Washington, DC 20012
| | - Kari Sherman
- New Light Technologies, Inc., Washington, DC 20012
| | | | - Soumitra S Bhuyan
- Edward J. Bloustein School of Planning and Public Policy, Rutgers University- New Brunswick
| | - Yazan Al-Ajlouni
- New York Medical College School of Medicine, Valhalla, NY 10595, USA
| | | | | | - Shermaine Abad
- Department of Radiology, University of California, San Diego, 92093
| | - Megan M. Herting
- University of Southern California, Keck School of Medicine of USC, Los Angeles, CA, 90089
| | - Wesley Thompson
- Laureate Institute for Brain Research, Tulsa, Oklahoma, 74136, USA
| | - Bishal Thapaliya
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA 30303
| | - Ram Sapkota
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA 30303
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA 30303
| | | | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University Shanghai, P.R. China
- PONS Centre, Dept. of Psychiatry and Neuroscience, CCM, Charite University Medicine Berlin, Germany
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA 30303
| |
Collapse
|