1
|
Zhang F, Fu H, Zhang D, Lou H, Sun X, Sun P, Wang X, Bao M. Co-pollution risk of petroleum hydrocarbons and heavy metals in typically polluted estuarine wetlands: Insights from the Xiaoqing River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174694. [PMID: 38997022 DOI: 10.1016/j.scitotenv.2024.174694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Excessive accumulation of total petroleum hydrocarbons (TPH) and heavy metals (HMs) in sediments poses a significant threat to the estuarine ecosystem. In this study, the spatial and temporal distribution, ecological risks, sources, and their impacts on the microbial communities of TPH and nine HMs in the estuarine sediments of the Xiaoqing River were determined. Results showed that the spatial distribution of TPH and HMs were similar but opposite in temporal. Ni, Cr, Pb, and Co concentrations were similar to the reference values (RVs). However, the other five HMs (Cu, Zn, Cd, As, and Hg) and TPH concentrations were 2.00-763.44 times higher than RVs; hence, this deserves attention, particularly for Hg. Owing to the water content of the sediments, Hg was mainly concentrated on the surface during the wet season and on the bottom during the dry season. Moreover, because of weak hydrodynamics and upstream pollutant sinks, TPH-HMs in the river were higher than those in the estuary. TPH and HM concentrations were negatively correlated with microbial diversity. Structural equation modeling showed that HMs (path coefficient = -0.50, p < 0.001) had a negative direct effect on microbial community structure and a positive indirect effect on TPH. The microbial community (path coefficient = 0.31, 0.01 < p < 0.05) was significantly correlated with TPH. In summary, this study explores both the chemical analysis of pollutants and their interaction with microbial communities, providing a better understanding of the co-pollution of TPH and HMs in estuarine sediments.
Collapse
Affiliation(s)
- Feifei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Hongrui Fu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dong Zhang
- Shouguang Marine Fishery Development Center, Weifang 262700, China
| | - Huawei Lou
- Shouguang Marine Fishery Development Center, Weifang 262700, China
| | - Xiaojun Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Peiyan Sun
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao 266100, China
| | - Xinping Wang
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Chang X, Duan T, Feng J, Li YX. Contrasting fate and binding behavior of Mn and Cu with dissolved organic matter during in situ remediation using multicomponent capping in malodorous black water. WATER RESEARCH 2024; 253:121288. [PMID: 38359596 DOI: 10.1016/j.watres.2024.121288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The common use of peroxides in the remediation of malodorous black water may lead to the activation of heavy metals in sediment when eliminating black and odorous substances. The mechanisms of heavy metal interactions with dissolved organic matter (DOM) in response to in situ capping have not been elucidated, but this information could guide the optimization of capping materials. We developed a capping material consisting of hydrothermally carbonized sediment (HCS), hydrated magnesium carbonate (HMC) and sodium percarbonate (SPC) and used microcosm experiments to investigate the dynamics of Mn and Cu at the sediment-water interface in malodorous black water. The results showed that HCS, HMC and SPC contributed multiple functions of mechanical protection, chemical isolation and oxygen provision to the new caps. HMC promoted the conversion of Mn/Cu into carbonate minerals. The optimal mass proportions were 25 % HCS, 60 % HMC and 15 % SPC based on the mixture design. In situ capping altered the fate and transformation of metals in the sediment-overlying water profile in the short term through Mn immobilization and Cu activation. The complexation of Cu(II) ions was significantly stronger than that of Mn(II) ions. In situ capping had a significant effect on the order of complexation of different fluorescent DOM molecules with Mn(II)/Cu(II) ions: microbial byproducts and fulvic acid-like components were preferentially complexed with Cu(II) ions after capping, while phenolic and humic acid-like components preferentially interacted with Mn(II) ions. Humic-like components bound to Cu were affected the most by capping treatment, whereas protein-like components were relatively weakly affected. Our study provides valuable knowledge on the impact of in situ capping on DOM-metal complexes.
Collapse
Affiliation(s)
- Xuan Chang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Tingting Duan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiashen Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ying-Xia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Chen X, Liu L, Wang Y, Zhou L, Xiao J, Yan W, Li M, Li Q, He X, Zhang L, You X, Zhu D, Yan J, Wang B, Hang X. The combined effects of lanthanum-modified bentonite and Vallisneria spiralis on phosphorus, dissolved organic matter, and heavy metal(loid)s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170502. [PMID: 38301791 DOI: 10.1016/j.scitotenv.2024.170502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
The use of lanthanum-modified bentonite (LMB) combined with Vallisneria spiralis (V∙s) (LMB + V∙s) is a common method for controlling internal phosphorus (P) release from sediments. However, the behaviors of iron (Fe) and manganese (Mn) under LMB + V∙s treatments, as well as the associated coupling effect on P, dissolved organic matter (DOM), and heavy metal(loid)s (HMs), require further investigations. Therefore, we used in this study a microelectrode system and high-resolution dialysis technology (HR-Peeper) to study the combined effects of LMB and V∙s on P, DOM, and HMs through a 66-day incubation experiment. The LMB + V∙s treatment increased the sediment DO concentration, promoting in-situ formations of Fe (III)/Mn (IV) oxyhydroxides, which, in turn, adsorbed P, soluble tungsten (W), DOM, and HMs. The increase in the concentrations of HCl-P, amorphous and poorly crystalline (oxyhydr) oxides-bound W, and oxidizable HMs forms demonstrated the capacity of the LMB + V∙s treatment to transform mobile P, W, and other HMs forms into more stable forms. The significant positive correlations between SRP, soluble W, UV254, and soluble Fe (II)/Mn, and the increased concentrations of the oxidizable HMs forms suggested the crucial role of the Fe/Mn redox in controlling the release of SRP, DOM, and HMs from sediments. The LMB + V∙s treatment resulted in SRP, W, and DOM removal rates of 74.49, 78.58, and 54.78 %, which were higher than those observed in the control group (without LMB and V∙s applications). On the other hand, the single and combined uses of LMB and V·s influenced the relative abundances of the sediment microbial communities without exhibiting effects on microbial diversity. This study demonstrated the key role of combined LMB and V∙s applications in controlling the release of P, W, DOM, and HMs in eutrophic lakes.
Collapse
Affiliation(s)
- Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Ling Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Li Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jing Xiao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Wenming Yan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Minjuan Li
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Qi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Xiangyu He
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Lan Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaohui You
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dongdong Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jiabao Yan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Bin Wang
- Zhongyifeng Construction Group Co., Ltd., Suzhou 215131, China
| | - Xiaoshuai Hang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
4
|
Wang Y, Zhou L, Zhang L, You X, Li C, Kong M, Xiao J, Chen X, Zhu D, Hang X. Spatiotemporal characterization of vanadium at the sediment-water interface of a multi-ecological lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165715. [PMID: 37516179 DOI: 10.1016/j.scitotenv.2023.165715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
As an emerging environmentally harmful metal, vanadium (V) deserves significant research attention due to its hazardous concentrations in aquatic environments. However, the research on the characterization of V in sediment-water interface (SWI) remains limited. In this study, seasonal sampling was conducted in algal- and macrophyte-dominated zones via the method of in situ high-resolution diffusive gradients in thin films (DGT). The concentration of dissolved V in water in algal-dominated regions (12 sites) exceeded the long-term ecotoxicology limit of 1.2 μg⋅L-1. Seasonal variations of chemical speciation of V were observed in three ecological sites. DGT-labile V at the SWI exhibited two basic patterns associated with eutrophic status, one showing sharply decreasing gradients in the vicinity of the SWI and the other showing the absence of diffusion gradient. Positive correlations were observed between the water-dissolved V and the DGT-labile V, indicating DGT-labile V is a sensitive indicator for the release of V from sediment into water. Moreover, the mobility of V was influenced by the reduction of Fe(hydr)oxides and complexation with organic matter, in particular, during periods of algal blooms. It is suggested that V contamination at the SWI of algal-dominated zones deserves additional attention.
Collapse
Affiliation(s)
- Yan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Li Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lan Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xiaohui You
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Cai Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jing Xiao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Dongdong Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xiaoshuai Hang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
5
|
Chen L, Zheng X, Zhang K, Wu B, Pei X, Chen W, Wei X, Luo Z, Li Y, Zhang Z. Sustained-release nitrate combined with microbial fuel cell: A novel strategy for PAHs and odor removal from sediment. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131610. [PMID: 37201276 DOI: 10.1016/j.jhazmat.2023.131610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Nitrate addition is a biostimulation technique that can improve both the oxidation of acid volatile sulfide (AVS) through autotrophic denitrification and the biodegradation of polycyclic aromatic hydrocarbons (PAHs) via heterotrophic denitrification. However, during the remediation, parts of the dissolved nitrate in the sediment migrates from the sediment to the overlying water, leading to the loss of effective electron acceptor. To overcome this limitation, a combined approached was proposed, which involved nitrocellulose addition and a microbial fuel cell (MFC). Results indicated the nitrate could be slowly released and maintained at a higher concentration over long term. In the combined system, the removal efficiencies of PAHs and AVS were 71.56% and 89.76%, respectively. Furthermore, the voltage attained for the MFC-nitrocellulose treatment was maintained at 146.1 mV on Day 70, which was 5.37 times higher than that of the MFC-calcium nitrate treatment. Sediments with nitrocellulose resulted in lower levels of nitrate and ammonium in the overlying water. Metagenomic results revealed that the combined technology improved the expression of nitrogen-cycling genes. The introduction of MFC inhibited sulfide regeneration during incubation by suppressing the enzyme activity like EC4.4.1.2. The enhanced biostimulation provided potential for in-situ bioremediation utilizing MFC coupled with slow-released nitrate (i.e., nitrocellulose) treatment.
Collapse
Affiliation(s)
- Lili Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiangjian Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Kun Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Baile Wu
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Xu Pei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Weisong Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoli Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zifeng Luo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Zhen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|