1
|
Ni X, Yan C, Guo B, Han Z, Cui C. Occurrence, predictive models and potential health risk assessment of viable but non-culturable (VBNC) pathogens in drinking water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125794. [PMID: 39914561 DOI: 10.1016/j.envpol.2025.125794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Viable but non-culturable (VBNC) pathogens are prevalent in drinking water systems and can resuscitate under favorable conditions, thereby posing significant public health risks. This study investigated the occurrence of VBNC Escherichia coli and Pseudomonas aeruginosa in source water, tap water, and potable water in eastern China, using propidium monoazide-quantitative PCR and culture-based methods. Multiple linear regression (MLR) and artificial neural network (ANN) models were developed based on conventional water quality indicators to predict VBNC pathogen concentrations. The results indicated that drinking water treatment plants effectively reduced VBNC pathogens by 1-3 log units, however, concentrations ranging from 100 to 102 CFU/100 mL remained in tap and potable water, with detection rates between 83.33% and 100%. Furthermore, potable water contained a higher concentration of VBNC pathogens than tap water, suggesting a potential risk of microbial leakage from water dispensers. The constructed ANN models outperformed than MLR models, with R values greater than 0.8, indicating a strong correlation between measured values and model predictions for VBNC pathogens. ANN models also demonstrated superior accuracy than MLR models in predicting VBNC pathogens across different type of drinking water, achieving accuracies of 88.89% for Escherichia coli and 77.78% for Pseudomonas aeruginosa. The QMRA revealed that annual infection risks and disease burdens from VBNC pathogens in potable water were greater than those in tap water, with both exceeding acceptable safety thresholds. This study emphasizes that the risks posed by VBNC pathogens deserve attention and model predictions provide critical evidence for health risk identification.
Collapse
Affiliation(s)
- Xuan Ni
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bingbing Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ziwei Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
2
|
La Rosa MC, Maugeri A, Favara G, La Mastra C, Magnano San Lio R, Barchitta M, Agodi A. The Impact of Wastewater on Antimicrobial Resistance: A Scoping Review of Transmission Pathways and Contributing Factors. Antibiotics (Basel) 2025; 14:131. [PMID: 40001375 PMCID: PMC11851908 DOI: 10.3390/antibiotics14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Antimicrobial resistance (AMR) is a global issue driven by the overuse of antibiotics in healthcare, agriculture, and veterinary settings. Wastewater and treatment plants (WWTPs) act as reservoirs for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The One Health approach emphasizes the interconnectedness of human, animal, and environmental health in addressing AMR. This scoping review analyzes wastewater's role in the AMR spread, identifies influencing factors, and highlights research gaps to guide interventions. METHODS This scoping review followed the PRISMA-ScR guidelines. A comprehensive literature search was conducted across the PubMed and Web of Science databases for articles published up to June 2024, supplemented by manual reference checks. The review focused on wastewater as a source of AMR, including hospital effluents, industrial and urban sewage, and agricultural runoff. Screening and selection were independently performed by two reviewers, with conflicts resolved by a third. RESULTS Of 3367 studies identified, 70 met the inclusion criteria. The findings indicated that antibiotic residues, heavy metals, and microbial interactions in wastewater are key drivers of AMR development. Although WWTPs aim to reduce contaminants, they often create conditions conducive to horizontal gene transfer, amplifying resistance. Promising interventions, such as advanced treatment methods and regulatory measures, exist but require further research and implementation. CONCLUSIONS Wastewater plays a pivotal role in AMR dissemination. Targeted interventions in wastewater management are essential to mitigate AMR risks. Future studies should prioritize understanding AMR dynamics in wastewater ecosystems and evaluating scalable mitigation strategies to support global health efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (M.C.L.R.); (A.M.); (G.F.); (C.L.M.); (R.M.S.L.); (M.B.)
| |
Collapse
|
3
|
Ullah H, Hassan SHA, Yang Q, Salama ES, Liu P, Li X. Dynamic interaction of antibiotic resistance between plant microbiome and organic fertilizers: sources, dissemination, and health risks. World J Microbiol Biotechnol 2024; 41:4. [PMID: 39690351 DOI: 10.1007/s11274-024-04214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024]
Abstract
Antibiotic resistance is a global health problem driven by the irrational use of antibiotics in different areas (such as agriculture, animal farming, and human healthcare). Sub-lethal concentrations of antibiotic residues impose selective pressure on environmental, plant-associated, and human microbiome leading to the emergence of antibiotic-resistant bacteria (ARB). This review summarizes all sources of antibiotic resistance in agricultural soils (including manure, sewage sludge, wastewater, hospitals/pharmaceutical industry, and bioinoculants). The factors (such as the physicochemical properties of soil, root exudates, concentration of antibiotic exposure, and heavy metals) that facilitate the transmission of resistance in plant microbiomes are discussed. Potential solutions for effective measures and control of antibiotic resistance in the environment are also hypothesized. Manure exhibits the highest antibiotics load, followed by hospital and municipal WW. Chlortetracycline, tetracycline, and sulfadiazine have the highest concentrations in the manure. Antibiotic resistance from organic fertilizers is transmitted to the plant microbiome via horizontal gene transfer (HGT). Plant microbiomes serve as transmission routes of ARB and ARGS to humans. The ingestion of ARB leads to human health risks (such as ineffectiveness of medication, increased morbidity, and mortality).
Collapse
Affiliation(s)
- Habib Ullah
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Sedky H A Hassan
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Muscat, Oman
| | - Qi Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| |
Collapse
|
4
|
Park JH, Bae KS, Kang J, Park ER, Yoon JK. Comprehensive Study of Antibiotic Resistance in Enterococcus spp.: Comparison of Influents and Effluents of Wastewater Treatment Plants. Antibiotics (Basel) 2024; 13:1072. [PMID: 39596765 PMCID: PMC11590936 DOI: 10.3390/antibiotics13111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The spread of antibiotic resistance, particularly through Enterococcus spp., in wastewater treatment plants (WWTPs) poses significant public health risks. Given that research on antibiotic-resistant enterococci and their antibiotic-resistance genes in aquatic environments is limited, we evaluated the role of Enterococcus spp. in WWTPs by comparing the antibiotic resistance rates, gene prevalence, biofilm formation, and residual antibiotics in the influent and effluent using culture-based methods. Methods: In 2022, influent and effluent samples were collected from 11 WWTPs in South Korea. Overall, 804 Enterococcus strains were isolated, and their resistance to 16 antibiotics was assessed using the microdilution method. Results: High resistance to tetracycline, ciprofloxacin, kanamycin, and erythromycin was observed. However, no significant differences in the overall resistance rates and biofilm formation were observed between the influent and effluent. Rates of resistance to ampicillin, ciprofloxacin, and gentamicin, as well as the prevalence of the tetM and qnrS genes, increased in the effluent, whereas resistance rates to chloramphenicol, florfenicol, erythromycin, and tylosin tartrate, along with the prevalence of the optrA gene, decreased. E. faecium, E. hirae, and E. faecalis were the dominant species, with E. faecalis exhibiting the highest resistance. Conclusions: Our results suggest that WWTPs do not effectively reduce the rates of resistant Enterococcus spp., indicating the need for continuous monitoring and improvement of the treatment process to mitigate the environmental release of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ji-Hyun Park
- Han River Environment Research Center, National Institute of Environment Research, Yangpyeong-gun, Incheon 12585, Gyeonggi-do, Republic of Korea
| | - Kyung-Seon Bae
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (E.-R.P.); (J.-K.Y.)
| | - Jihyun Kang
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (E.-R.P.); (J.-K.Y.)
| | - Eung-Roh Park
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (E.-R.P.); (J.-K.Y.)
| | - Jeong-Ki Yoon
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (E.-R.P.); (J.-K.Y.)
| |
Collapse
|
5
|
Negi M, Kaushik N, Lamichhane P, Jaiswal A, Borkar SB, Patel P, Singh P, Choi EH, Kaushik NK. Biocompatible plasma-treated liquids: A sustainable approach for decontaminating gastrointestinal-infection causing pathogens. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134562. [PMID: 38743977 DOI: 10.1016/j.jhazmat.2024.134562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Nosocomial infections are a serious threat and difficult to cure due to rising antibiotic resistance in pathogens and biofilms. Direct exposure to cold atmospheric plasma (CAP) has been widely employed in numerous biological research endeavors. Nonetheless, plasma-treated liquids (PTLs) formulated with physiological solutions may offer additional benefits such as enhanced portability, and biocompatibility. Additionally, CAP-infused long-lived reactive oxygen and nitrogen species (RONS) such as nitrite (NO2-), nitrate (NO3-), and hydrogen peroxide (H2O2) can synergistically induce their antibacterial activity. Herein, we investigated those argon-plasma jet-treated liquids, including Ringer's lactate (RL), phosphate-buffered saline (PBS), and physiological saline, have significant antibacterial activity against nosocomial/gastrointestinal-causing pathogens, which might be due to ROS-mediated lipid peroxidation. Combining the conventional culture-based method with propidium iodide monoazide quantitative PCR (PMAxx™-qPCR) indicated that PTLs induce a minimal viable but non-culturable (VBNC) state and moderately affect culturable counts. Specifically, the PTL exposure resulted in pathogenicity dysfunction via controlling T3SS-related effector genes of S. enterica. Overall, this study provides insights into the effectiveness of PTLs for inducing ROS-mediated damage, controlling the virulence of diarrheagenic bacteria, and modulating homeostatic genes.
Collapse
Affiliation(s)
- Manorma Negi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, South Korea.
| | - Prajwal Lamichhane
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea
| | - Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea
| | - Shweta B Borkar
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea
| | - Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
6
|
Lin ZJ, Zhou ZC, Shuai XY, Shan XY, Zhou JY, Chen H. Deciphering Multidrug-Resistant Plasmids in Disinfection Residual Bacteria from a Wastewater Treatment Plant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6793-6803. [PMID: 38574343 DOI: 10.1021/acs.est.3c10895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Current disinfection processes pose an emerging environmental risk due to the ineffective removal of antibiotic-resistant bacteria, especially disinfection residual bacteria (DRB) carrying multidrug-resistant plasmids (MRPs). However, the characteristics of DRB-carried MRPs are poorly understood. In this study, qPCR analysis reveals that the total absolute abundance of four plasmids in postdisinfection effluent decreases by 1.15 log units, while their relative abundance increases by 0.11 copies/cell compared to investigated wastewater treatment plant (WWTP) influent. We obtain three distinctive DRB-carried MRPs (pWWTP-01-03) from postdisinfection effluent, each carrying 9-11 antibiotic-resistant genes (ARGs). pWWTP-01 contains all 11 ARGs within an ∼25 Kbp chimeric genomic island showing strong patterns of recombination with MRPs from foodborne outbreaks and hospitals. Antibiotic-, disinfectant-, and heavy-metal-resistant genes on the same plasmid underscore the potential roles of disinfectants and heavy metals in the coselection of ARGs. Additionally, pWWTP-02 harbors an adhesin-type virulence operon, implying risks of both antibiotic resistance and pathogenicity upon entering environments. Furthermore, some MRPs from DRB are capable of transferring and could confer selective advantages to recipients under environmentally relevant antibiotic pressure. Overall, this study advances our understanding of DRB-carried MRPs and highlights the imminent need to monitor and control wastewater MRPs for environmental security.
Collapse
Affiliation(s)
- Ze-Jun Lin
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen-Chao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-Yi Shuai
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Yu Shan
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jin-Yu Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
- International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|