1
|
Rieder GS, Duarte T, Delgado CP, Rodighiero A, Nogara PA, Orian L, Aschner M, Dalla Corte CL, Da Rocha JBT. Interplay between diphenyl diselenide and copper: Impact on D. melanogaster survival, behavior, and biochemical parameters. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109899. [PMID: 38518983 DOI: 10.1016/j.cbpc.2024.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Copper (Cu2+) is a biologically essential element that participates in numerous physiological processes. However, elevated concentrations of copper have been associated with cellular oxidative stress and neurodegenerative diseases. Organo‑selenium compounds such as diphenyl diselenide (DPDS) have in vitro and in vivo antioxidant properties. Hence, we hypothesized that DPDS may modulate the toxicity of Cu2+ in Drosophila melanogaster. The acute effects (4 days of exposure) caused by a high concentration of Cu2+ (3 mM) were studied using endpoints of toxicity such as survival and behavior in D. melanogaster. The potential protective effect of low concentration of DPDS (20 μM) against Cu2+ was also investigated. Adult flies aged 1-5 days post-eclosion (both sexes) were divided into four groups: Control, DPDS (20 μM), CuSO4 (3 mM), and the combined exposure of DPDS (20 μM) and CuSO4 (3 mM). Survival, biochemical, and behavioral parameters were determined. Co-exposure of DPDS and CuSO4 increased acetylcholinesterase (AChE) activity and the generation of reactive oxygen species (ROS as determined by DFCH oxidation). Contrary to our expectation, the co-exposure reduced survival, body weight, locomotion, catalase activity, and cell viability in relation to control group. Taken together, DPDS potentiated the Cu2+ toxicity.
Collapse
Affiliation(s)
- G S Rieder
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil. https://twitter.com/RiederSchmitt
| | - T Duarte
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil. https://twitter.com/tttamie
| | - C P Delgado
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil. https://twitter.com/cassiapdelgado
| | - A Rodighiero
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - P A Nogara
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFSul), Av. Leonel de Moura Brizola, 2501, 96418-400 Bagé, RS, Brazil. https://twitter.com/nogara_pablo
| | - L Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy. https://twitter.com/_LauraOrian
| | - M Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - C L Dalla Corte
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - J B T Da Rocha
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry, Institute of Basic Health Science, Federal University of Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
2
|
Rieder GS, Zamberlan DC, Aschner M, Silva LFO, da Rocha JBT. Biological effects of a copper-based fungicide on the fruit fly, Drosophila melanogaster. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:341-349. [PMID: 38709203 DOI: 10.1080/03601234.2024.2347167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
The increased consumption of pesticides can have a negative environmental impact by increasing the essential metals to toxic levels. Bordasul® is a commonly used fungicide in Brazil and it is composed of 20% Cu, 10% sulfur, and 3.0% calcium. The study of fungicides in vivo in non-target model organisms can predict their environmental impact more broadly. The Drosophila melanogaster is a unique model due to its ease of handling and maintenance. Here, the potential toxicity of Bordasul® was investigated by assessing the development, survival, and behavior of exposed flies. Exposure to Bordasul® impaired the development (p < 0.01) and caused a significant reduction in memory retention (p < 0.05) and locomotor ability (p < 0.001). Fungicides are needed to assure the world's food demand; however, Bordasul® was highly toxic to D. melanogaster. Therefore, Bordasul® may be potentially toxic to non-target invertebrates and new environmentally-safe biofertilizers have to be developed to preserve the biota.
Collapse
Affiliation(s)
- G S Rieder
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - D C Zamberlan
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - M Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - L F O Silva
- Department of Civil and Environmental, Universidad De La Costa, Barranquilla, Atlantico, Colombia
| | - J B T da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Márquez Álvarez CDM, Hernández-Cruz EY, Pedraza-Chaverri J. Oxidative stress in animal models of obesity caused by hypercaloric diets: A systematic review. Life Sci 2023; 331:122019. [PMID: 37567497 DOI: 10.1016/j.lfs.2023.122019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Obesity is a global health difficulty characterized by an excessive accumulation of fat that increases body weight. Obesity has been studied in multiple animal models, of which those in which it is induced by diet stand out. Due to the increase in this condition, other mechanisms have been addressed that are triggered by states of overweight or obesity, such as the appearance of oxidative stress. These models aim to relate obesity caused by diet and how it influences the development of oxidative stress. In this study, a systematic review of the literature of 39 articles that studied obesity due to the consumption of hypercaloric diets and the appearance of oxidative stress in different animal models was carried out. This review identified the models with the most excellent use and the characteristics of the most appropriate diets to characterize states of oxidative stress due to obesity. In addition, the advantages and disadvantages of each model used are provided, as well as the techniques used for the assessment of obesity, and oxidative stress, providing the information in such a way that there is a general overview of the existing models of the parameters that allow to adequately establish both variables studied, providing information that allows the researcher to choose the appropriate model and factors according to the interest and objectives of the present research.
Collapse
Affiliation(s)
- Corazón de María Márquez Álvarez
- Laboratory for Research in Metabolic and Infectious Diseases, Multidisciplinary Academic División of Comalco, Juarez Autonomous University of Tabasco, Ranchería Sur, Cuarta Sección, 866500, Comalco, Tabasco, Mexico
| | - Estefani Yaquelin Hernández-Cruz
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico; Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Duc Phung L, Dhewi Afriani S, Aditya Padma Pertiwi P, Ito H, Kumar A, Watanabe T. Effects of CuO nanoparticles in composted sewage sludge on rice-soil systems and their potential human health risks. CHEMOSPHERE 2023; 338:139555. [PMID: 37487974 DOI: 10.1016/j.chemosphere.2023.139555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
The release of metal-based nanoparticles (MNPs) into sewage systems is worrisome due to their potential impact on crop-soil systems that are amended with sewage sludge. This study aimed to investigate the effects of copper oxide nanoparticles (CuO NPs) in composted sewage sludge (CSS) on rice-soil systems and to assess the health risks associated with consuming CuO NP-contaminated rice produced by CSS amendment. CSS was treated with three doses of CuO NPs, resulting in Cu levels below the sludge limits (1500 mg Cu kg-1) for reuse as a soil amendment. Results showed that CuO NPs in CSS at environmentally acceptable levels had no negative effect on rice growth and yield. In fact, they enhanced biomass production, tillering capacity, and soil fertility by increasing N and K levels in the soil. In addition, CuO NPs in CSS (450-1450 mg Cu kg-1) promoted the accumulation of macro- and micro-minerals in rice grains, thereby improving the nutritional value of rice. However, Cu contamination in CSS led to elevated levels of toxic metals, especially As, in rice grains, posing potential health risks to both adults and children. In the presence of higher CuO NPs contamination in CSS, the hazard quotient of As exceeded one, indicating an increased risks of toxic metal exposure via rice consumption. This study raises concerns about potential long-term threats to human health posed by MNPs contamination in CSS and highlights the need to reevaluate the permissible limits of hazardous elements in sludge to ensure its safe reuse in agriculture.
Collapse
Affiliation(s)
- Luc Duc Phung
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan; Center for Foreign Languages and International Education, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Ha Noi, 12406, Viet Nam.
| | - Shinta Dhewi Afriani
- Graduate School of Agricultural Science, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Putri Aditya Padma Pertiwi
- Graduate School of Agricultural Science, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Hiroaki Ito
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Toru Watanabe
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| |
Collapse
|