1
|
Chen L, Li S, Zhang J, Zhen F, Shang Z, Yan M, Zhang Y, Zhang P, Sun Y, Li Y. A critical review on bioaugmentation assisted anaerobic digestion for methane production: Performances, microbiome-functionalities and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125127. [PMID: 40154254 DOI: 10.1016/j.jenvman.2025.125127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/24/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Bioaugmentation technology is considered as a straightforward approach to improve anaerobic digestion performances, with advantages of high efficiency and sustainability. However, the mechanisms and challenges of bioaugmentation in anaerobic digestion have yet to been well reviewed. In this review, the advantages of bioaugmentation in anaerobic digestion are systematically identified and discussed, covering enhancing anaerobic digestion process, relieving toxic inhibition of ammonia, and overcoming limitation of psychrophilic anaerobic digestion. This review find that the underlying mechanisms of bioaugmentation enhancing anaerobic digestion are the improvement of microbial community metabolism activity, interspecies electron transfer, and microbial adaptability to environment stress. In addition, future challenges and research directions are discussed from theoretical and practical perspectives, including preparation of bioaugmentation microorganisms, immobilization of bioaugmentation microorganisms, and economic feasibility of bioaugmentation technology. This review contributes to understanding the positive effect of bioaugmentation on anaerobic digestion and promoting the applicability of bioaugmentation technology in anaerobic digestion.
Collapse
Affiliation(s)
- Le Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Shuangshuang Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Jiasheng Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Zezhou Shang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Miao Yan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Yajie Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Ying Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China.
| |
Collapse
|
2
|
Chen N, Zhang X, Qi L, Gao F, Wu G, Li H, Guo W, Ngo HH. Enhancement of volatile fatty acids degradation and rapid methanogenesis in a biochar-assisted anaerobic membrane bioreactor via enhancing direct interspecies electron transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125045. [PMID: 40127599 DOI: 10.1016/j.jenvman.2025.125045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/18/2025] [Accepted: 03/16/2025] [Indexed: 03/26/2025]
Abstract
In this investigation, we assessed the efficacy of a biochar-supported anaerobic membrane bioreactor (BC-AnMBR) for continuously treating swine wastewater (SWW) under varying NH4+-N stress levels. Our findings revealed that as the NH4+-N concentration escalated from 440 mg/L to 1400 mg/L, the BC-AnMBR exhibited a notable 14.5 % improvement in NH4+-N removal under heightened ammonia pressure compared to the conventional AnMBR (CG-AnMBR). This enhancement primarily stemmed from ion-exchange interactions between the functional groups (hydroxyl, carboxyl, ester, and aldehyde groups) on the biochar surface and NH4+-N, serving as the primary mechanism of action. Moreover, concerning resource recovery, the BC-AnMBR sustained a standard methane yield of 0.184 LCH4/gCOD, surpassing that of the CG-AnMBR by more than threefold. Microbial community analysis unveiled that the BC-AnMBR fostered the enrichment of ammonia-tolerant electroactive methanogenic archaea, notably from the genera Methanosarcina and Methanolinea. Notably, up-regulation of functional genes associated with key enzymes involved in propionic and butyric acid degradation and the autotrophic methanogenic pathway was observed in the BC-AnMBR, consequently accelerating methane production rates. Ultimately, the incorporation of biochar amplified the activity of the microbial electron transport system by 41.77 % and boosted the concentration of c-type cytochrome by 50.6 %. These enhancements facilitated the establishment of direct interspecies electron transfer, ensuring the stability of the anaerobic digestion process under ammonia-inhibited conditions.
Collapse
Affiliation(s)
- Nianwen Chen
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China.
| | - Li Qi
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Fu Gao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 TK33, Ireland
| | - Hongxia Li
- Tianjin Caring Technology Development Co., Ltd., Haitai North Road 2, Tianjin, 300381, China
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
3
|
Wang Q, Wang Y, Liang Z, Ding F, Liang B, Wen S, Lu Y, Su C. Insights into the roles and mechanisms of coconut shell biochar and coke in anaerobic digestion of river snail rice noodle wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123513. [PMID: 39626397 DOI: 10.1016/j.jenvman.2024.123513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 01/15/2025]
Abstract
The effects of coconut shell biochar and coke on anaerobic digestion of river snail rice noodle wastewater treatment were assessed, and the microbial community, and methane metabolic pathways were investigated. When the hydraulic retention time was 24 h, the average chemical oxygen demand (COD) removal rates in the reactors with coconut shell biochar and coke were 94.02% and 88.68%, respectively; when the hydraulic retention time was 12 h, the average COD removal rates were 91.32% and 85.47%, respectively. The addition of coconut shell biochar and coke increased the activity of protease in the sludge from 0.45% to 29.31% and from 1.00% to 21.35%, respectively. The addition of coconut shell biochar and coke to the two anaerobic reactors promoted the growth of Euryarchaeota, Proteobacteria, and Chloroflexi. In glycolysis, the key genes glk, pfk and pk were upregulated by 3.15%, 5.22%, and 0.44% in the coconut shell biochar reactor and 8.97%, 1.93% and 3.73% in the coke reactor, respectively, and the keytricarboxylic acid (TCA) cycle genes kor, frd, and mdh were also up-regulated.
Collapse
Affiliation(s)
- Qing Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Yuchen Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Zhu Liang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Fengxiu Ding
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Bocai Liang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Shitong Wen
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China.
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|
4
|
Yang Y, Guo W, Zhang J, Liang S, Liu Q, Liu J, Ngo HH, Zhang H. Applicability analysis of algae biochar for anaerobic membrane bioreactors in wastewater treatment: A review from a sustainability assessment perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177609. [PMID: 39577581 DOI: 10.1016/j.scitotenv.2024.177609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
The incorporation of biochar can significantly enhance the performance of anaerobic membrane bioreactors (AnMBRs), achieving up to a 95 % increase in pollutant removal efficiency and an 86 % improvement in methane production. Algae biochar, in particular, shows great promise as an effective additive in AnMBR systems because of its low cost (approximately $0.470/kg) and the abundance of raw material sources. This paper presents a comprehensive applicability analysis of algae biochar-AnMBRs from a sustainability assessment perspective, addressing technical, environmental, economic, and social dimensions. Key technical benefits include a reduction in membrane fouling by 92.1 % and an enhancement of energy recovery by 58.7 % compared to conventional AnMBRs. Following this, the paper evaluates algae biochar-AnMBRs from environmental, economic, and social viewpoints to emphasize the practical applicability and potential of this process. Finally, this review addresses the limitations related to the full-scale implementation of this technology and proposes strategic approaches to overcome these challenges. Overall, the review provides valuable insights into the practical application of algae biochar-AnMBR systems, with a strong focus on sustainability.
Collapse
Affiliation(s)
- Yuanying Yang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Technology, Shandong University, Qingdao 266237, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Technology, Shandong University, Qingdao 266237, China
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Huiying Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Adams M. Ammonia-stressed anaerobic digestion: Sensitivity dynamics of key syntrophic interactions and methanogenic pathways-A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123183. [PMID: 39492135 DOI: 10.1016/j.jenvman.2024.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The problematic anaerobic digestion (AD) of protein-rich substrates owing to their high ammonia content continues to hinder optimum methanation despite their high potential for offsetting greenhouse gas (GHG) emissions. This review focuses on the analyses of the sensitivity dynamics of key AD processes as well as the microbial interactions and exchanges that occur with them. Aside from the apparent increased risk associated with thermophilic ammonia-rich substrate AD, the marginally higher energy generation compared to mesophilic systems is not commensurate to the energy requirement. Moreover, while comparable FAN thresholds have been confirmed, TAN thresholds are susceptible to physical chemistry and so vary greatly. Profiling of the metabolic capability of front-end AD microbiome revealed Bacteroidetes, Firmicutes, and Synergistetes as some of the ammonia-resilient bacteria groups while Proteobacteria and Actinobacteria were the most fragile taxa. Besides the predominance of incomplete propionate oxidizing bacteria under ammonia stress conditions, syntrophic propionate oxidation (SPO) is usually shifted from the methylmalonyl CoA to the dismutation pathway. Furthermore, besides their different recoverability potentials, distinct methanogenic groups are differentially impacted by different ammonia species. Prevailing literature evidence suggests that conductive material assisted bioaugmentation with SAO-HM consortia, and in-situ H2 supplementation are the most effective for expediting electron transfer and relieving ammonia stress. These valuable insights should inform the design of targeted ammonia inhibition mitigation strategies.
Collapse
Affiliation(s)
- Mabruk Adams
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 TK33, Ireland.
| |
Collapse
|
6
|
He Y, Wang S, Shen C, Wang Z, Liu Y, Meng X, Li X, Zhao X, Chen J, Xu J, Yu J, Cai Y, Ying H. Biochar accelerates methane production efficiency from Baijiu wastewater: Some viewpoints considering direct interspecies electron transfer. CHEMICAL ENGINEERING JOURNAL 2024; 497:154527. [DOI: 10.1016/j.cej.2024.154527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
|
7
|
Wang S, Wang J. Comparison of Fenton-like catalytic activity of biochar by in-situ and ex-situ nitrogen doping: Role of carbon quantum dots. CHEMOSPHERE 2024; 364:143000. [PMID: 39098351 DOI: 10.1016/j.chemosphere.2024.143000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Nitrogen-doped biochar as Fenton-like catalysts has been widely used to remove emerging pollutants in wastewater. However, the effect of in-situ and ex-situ nitrogen doping on the Fenton-like catalytic activity of biochar is unclear. In this study, the nitrogen-doped biochar was prepared by in-situ (NBC) and ex-situ (BC-N) nitrogen doping, and the Fenton-like catalytic activity of NBC and BC-N was compared for activating hydrogen peroxide (H2O2), peroxydisulfate (PDS) and peroxymonosulfate (PMS). The results showed that NBC had higher Fenton-like catalytic activity than BC-N, because the formation of carbon quantum dots (CQDs) significantly increased the adsorption capacity to H2O2, PDS and PMS. NBC could activate H2O2, PDS and PMS for degradation of sulfamethoxazole (SMX), but showed different catalytic activity and degradation mechanism. In the systems of NBC/H2O2 and NBC/PDS, CQDs played a key role in the activation of H2O2 and PDS, and surface-bound reactive species were mainly responsible for SMX degradation. In the system of NBC/PMS, NBC acted as both electron mediator and activator, direct electron transfer between PMS and SMX and surface-bound reactive species contributed to SMX degradation. This study provides an insight into the catalytic activity of NBC for H2O2, PDS and PMS.
Collapse
Affiliation(s)
- Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Jing Z, Li Q, Lu J, Ma J, Ye F, Tu S, Dong B, Liu X, Gao H. Revealing microbial community assembly patterns and succession process in the blackening process of black-odor water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124129. [PMID: 38729505 DOI: 10.1016/j.envpol.2024.124129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Human-imported pollutants could induce water black, changing microbial community structure and function. Employed 16S rRNA high-throughput sequencing, field-scale investigations and laboratory-scale experiments were successively conducted to reveal mechanistic insights into microbial community assembly and succession of black-odor waters (BOWs). In the field-scale investigation, livestock breeding wastewater (56.7 ± 3.2%) was the most critical microbial source. Moreover, fermentation (27.1 ± 4.4%) was found to be the dominant function. Combined with laboratory experiments, the critical environmental factors, such as total organic carbon (30-100 mg/L), ammonia nitrogen (2.5-9 mg/L), initial dissolved oxygen (2-8 mg/L) and chlorophyll a (0-90 mg/L), impacted the intensity of blackening. The differentiation of ecological niches within the microbial community played a significant role in driving the blackening speed. In laboratory-scale experiments, the microbial ecological niche determined the blackening timing and dominations of the stochastic processes in the microbial assembly process (88 - 51%). The three stages, including the anaerobic degradation stage, blackening stage and slow recovery stage, were proposed to understand the assembly of the microbial communities. These findings enhance our understanding of microorganisms in BOWs and provide valuable insights for detecting and managing heavily organic polluted waters.
Collapse
Affiliation(s)
- Zhangmu Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Qingqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Jinxia Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Jiwei Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Fanjin Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Shengqiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| |
Collapse
|
9
|
Zhao ZJ, Liu XL, Wang YX, Wang YS, Shen JY, Pan ZC, Mu Y. Material and microbial perspectives on understanding the role of biochar in mitigating ammonia inhibition during anaerobic digestion. WATER RESEARCH 2024; 255:121503. [PMID: 38537488 DOI: 10.1016/j.watres.2024.121503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
With the increasing adoption of carbon-based strategies to enhance methanogenic processes, there is a growing concern regarding the correlation between biochar properties and its stimulating effects on anaerobic digestion (AD) under ammonia inhibition. This study delves into the relevant characteristics and potential mechanisms of biochar in the context of AD system under ammonia inhibition. The introduction of optimized biochar, distinguished by rich CO bond, abundant defect density, and high electronic capacity, resulted in a significant reduction in the lag period of anaerobic digestion system under 5.0 g/L ammonia stress, approximately by around 63 % compared to the control one. Biochar helps regulate the community structure, promotes the accumulation of acetate-consuming bacteria, in the AD system under ammonia inhibition. More examinations show that biochar promotes direct interspecies electron transfer in AD system under ammonia inhibition, as evidenced by diminished levels of bound electroactive extracellular polymeric substances, increased abundance of electroactive bacteria, and notably, the up-regulation of direct interspecies electron transfer associated genes, including the conductive pili and Cytochrome C genes, as revealed by meta-transcriptomic analysis. Additionally, gene expression related to proteins associated with ammonium detoxification were found to be up-regulated in systems supplemented with biochar. These findings provide essential evidence and insights for the selection and potential engineering of effective biochar to enhance AD performance under ammonia inhibition.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Li Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Xuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yan-Shan Wang
- School of Geographic Sciences, Nantong University, Nantong 226007, China
| | - Jin-You Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhi-Cheng Pan
- Laboratory of Urban Wastewater Treatment Technology in Sichuan Province of Haitian Water Group Co., Ltd, Chengdu 610041, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
10
|
Paritosh K, Bose A. Multi-criteria-based decision-making assessment for anaerobic digestion of ammonia-rich distillery wastewater: Effect of pyrochar and temperature. BIORESOURCE TECHNOLOGY 2024; 397:130493. [PMID: 38403171 DOI: 10.1016/j.biortech.2024.130493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Energy-efficient wastewater treatment units are imperative to achieve carbon neutrality and a circular economy at the industrial scale. In the present study, pyrochar loading and digestion temperature were tested to assess their impact on the performance of an anaerobic digester running on distillery wastewater. The digestion temperature (37 °C and 55 °C) and pyrochar loading (7.5 - 30 g/L.feed) were selected as two primary design factors. Experiments were designed using Taguchi's design of experiments and specific methane yield, total ammonia nitrogen, pH and buffering capacity were selected as experimental outputs for multi-criteria assessment. The results from the confirmation test indicated that the addition of pyrochar (7.5 g/Lfeed) improved the methane yield (276 ± 15 L/kg VS) significantly compared to the control (167 ± 15 L/kg VS) at 37 °C. The detailed post-digestion analysis showed that the adsorption of ammonia on pyrochar may be the primary reason for enhanced digester performance.
Collapse
Affiliation(s)
- Kunwar Paritosh
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland.
| | - Archishman Bose
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Process and Chemical Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland.
| |
Collapse
|
11
|
Wang G, Fu P, Su Y, Zhang B, Zhang M, Li Q, Zhang J, Li YY, Chen R. Comparing the mechanisms of syntrophic volatile fatty acids oxidation and methanogenesis recovery from ammonia stress in regular and biochar-assisted anaerobic digestion: Different roads lead to the same goal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120041. [PMID: 38219669 DOI: 10.1016/j.jenvman.2024.120041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
Biochar has been recognized as a promising additive to mitigate ammonia inhibition during syntrophic methanogenesis, while the key function of biochar in this process is still in debates. This study clarified the distinct mechanisms of syntrophic volatile fatty acids -oxidizing and methanogenesis recovery from ammonia inhibition in regular and biochar-assisted anaerobic digestion. Under 5 g/L ammonia stress, adding biochar shortened the methanogenic lag time by 10.9% and dramatically accelerated the maximum methane production rate from 60.3 to 94.7 mLCH4/gVSsludge/d. A photometric analysis with a nano-WO3 probe revealed that biochar enhanced the extracellular electron transfer (EET) capacity of suspended microbes (Pearson's r = -0.98), confirming that biochar facilitated methanogenesis by boosting EET between syntrophic butyrate oxidizer and methanogens. Same linear relationship between EET capacity and methanogenic rate was not observed in the control group. Microbial community integrating functional genes prediction analysis uncovered that biochar re-shaped syntrophic partners by enriching Constridium_sensu_stricto/Syntrophomonas and Methanosarcina. The functional genes encoding Co-enzyme F420 hydrogenase and formylmethanofuran dehydrogenase were upregulated by 1.4-2.3 times, consequently enhanced the CO2-reduction methanogenesis pathway. Meanwhile, the abundances of gene encoding methylene-tetrahydrofolate transformation, a series of intermediate processes involved in acetate oxidation, in the biochar-assisted group were 28.2-63.7% higher than these in control group. Comparatively, Methanosaeta played a pivotal role driving aceticlastic methanogenesis in the control group because the abundance of gene encoding acetyl-CoA decarbonylase/synthase complex increased by 1.9 times, suggesting an aceticlastic combining H2-based syntrophic methanogenesis pathway was established in control group to resist ammonia stress. A 2nd period experiment elucidated that although depending on distinct mechanisms, the volatile fatty acid oxidizers and methanogens in both groups developed sustained and stable strategies to resist ammonia stress. These findings provided new insights to understand the distinct methanogenic recovery strategy to resist toxic stress under varied environmental conditions.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Peng Fu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Yan Su
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, Xi'an 710054, China
| | - Bo Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Mengyuan Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Qian Li
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Jianfeng Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
12
|
Zhao W, Hu T, Ma H, Li D, Zhao Q, Jiang J, Wei L. A review of microbial responses to biochar addition in anaerobic digestion system: Community, cellular and genetic level findings. BIORESOURCE TECHNOLOGY 2024; 391:129929. [PMID: 37923231 DOI: 10.1016/j.biortech.2023.129929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The biochar is a well-developed porous material with various excellent properties, that has been proven with excellent ability in anaerobic digestion (AD) efficiency promotion. Current research is usually focused on the macro effects of biochar on AD, while the systematic review about the mechanisms of biochar on microbial behavior are still lacking. This review summarizes the effects and potential mechanisms of biochar on microorganisms in AD systems, and found that biochar addition can provide habitats for microbial colonization, alleviate toxins stress, supply essential nutrients, and accelerate interspecies electron transferring. Moreover, it also improves microbial community diversity, facilitates EPS secretion, enhances functional enzyme activity, promotes functional genes expression, and inhibits the antibiotic resistance genes transformation. Future research directions including biochar targeted design, in-depth microbial mechanisms revelation, and modified model development were suggested, which could promote the widely practical application of of biochar-amended AD technology.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
13
|
Bhujbal SK, Ghosh P, Vijay VK, Kumar M. Ruminal content biochar supplementation for enhanced biomethanation of rice straw: Focusing on biochar characterization and dose optimization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167250. [PMID: 37741391 DOI: 10.1016/j.scitotenv.2023.167250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Anaerobic digestion (AD) of agricultural wastes is a promising approach for energy recovery and crop residue management. However, its recalcitrant chemical structure hinders microbial hydrolysis and reduces biomethane production under AD. Biochar supplementation has been proven to promote the digestibility and biomethanation of lignocellulosic substrates. Therefore, this study investigated the influence of different pyrolysis temperatures (450 °C, 550 °C, and 650 °C) on the physicochemical properties of biochar. Furthermore, the impact of ruminal content biochar supplementation (1 %, 2 %, and 3 %) on the AD of rice straw with rumen fluid as inoculum has been investigated. The ruminal content biochar (RUCB) supplemented reactors showed an increment in biomethane yield and the highest cumulative biomethane yield 243.11 mL/g volatile solids (VS)) was recorded at 2 % RUCB supplementation, followed by 227.12 mL/g VS at 1 % RUCB supplementation and 162.86 mL/g VS at 3 % RUCB supplementation (P > 0.05). Compared to the control reactors (128.68 mL/g VS), RUCB supplemented reactors exhibited 1.88-fold, 1.76-fold, and 1.26-fold increments in biomethane yield due to pH stabilization and facilitation of microbial biofilm formation on the biochar. The correlation analysis showed that biomethane production is positively correlated with VS reduction (R2 = 0.9852). This study proposed a potential strategy to utilize ruminal content waste as a feedstock for biochar production and its application in AD for accelerating the biomethanation of rice straw.
Collapse
Affiliation(s)
- Sachin Krushna Bhujbal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, India.
| | - Virendra Kumar Vijay
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, India
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| |
Collapse
|
14
|
Wang G, Chen L, Xing Y, Sun C, Fu P, Li Q, Chen R. Biochar establishing syntrophic partnership between exoelectrogens to facilitate extracellular electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166549. [PMID: 37633395 DOI: 10.1016/j.scitotenv.2023.166549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Biochar was regarded as a promising accelerator for extracellular electron transfer (EET), while the mechanism of biochar facilitating electricity harvest in bioelectrochemical system (BES) was in debates. In this study, sawdust-based biochar with low conductivity but strong redox-based electron exchange capacity was added into BES with two forms, including a suspended form (S-BC) added in anode chamber and a fixed form closely wrapping up the anode (F-BC). Compared with the control group, S-BC and F-BC addition dramatically increased accumulated electricity output by 2.0 and 5.1 times. However, electrochemical analysis characterized the lowest electrochemical property on anode surface in F-BC modified group. A 2nd period conducted by separating F-BC modified group with "aged F-BC + new anode" group and "single aged anode" group demonstrated that F-BC contributed >95 % to the current generation of F-BC modified group, while the anode almost acted as a conductor to transfer the generated electrons to cathode. Microbial community analysis revealed that both heterotrophic and autotrophic exoelectrogens contributed to current generation. The presence of biochar upregulated functional genes encoding cytochrome-c and type IV pilus, thereby boosting electricity harvest efficiency. Interestingly, the heterotrophic exoelectrogens of Geobacter/Desulfovibrio tended to attach on fixed surfaces of both biochar and anode, and the autotrophic exelectrogen of Hydrogenophaga was selectively enriched on biochar surfaces whatever fixed or suspended form. Consequently, a syntrophic partnership between Geobacter/Desulfovibrio and Hydrogenophaga was potentially establishment on F-BC surface for highly-efficient electricity harvest. In this syntrophic EET model, biochar potentially acted as the redox-active mediator, which temporarily accepted electron released by Geobacter/Desulfovibrio via acetate oxidation, and then donated them to Hydrogenophaga attached on biochar surfaces for autotrophic EET. This was distinct from a regular EET conducted by heterotrophic exoelectrogens. These findings provided new insights to understand the mechanisms of biochar facilitating EET by syntrophic metabolism pathway.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Lu Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yao Xing
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Xingrong (Xi'an) Environmental Development Co., No. 3160, Dazhai Road, Xi'an 710055, PR China
| | - Changxi Sun
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Peng Fu
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
15
|
Shen R, Yao Z, Yu J, Luo J, Geng T, Zhao L. Evaluation of activated pyrochar for boosting anaerobic digestion: Performances and microbial community. BIORESOURCE TECHNOLOGY 2023; 388:129732. [PMID: 37696338 DOI: 10.1016/j.biortech.2023.129732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
In this study, the effects of CO2-activated/non-activated pyrochars (PCs) from cornstalk, cotton straw, and rice straw on anaerobic digestion (AD) performances and microbial characteristics were investigated. The maximum biogas production rate (2.2 L/L/d) with a methane content of 73% was obtained from the AD with CO2-activated cotton straw PC. The activated PC mainly played a strengthening role in the early and middle stages of AD. Specifically, the cornstalk PC could greatly relieve acid inhibition, and cotton straw PC had a significantly positive effect on the regulation of ammonia nitrogen concentration. The rare genera like Verrucomicrobia had obvious differences among groups of AD with PCs. Regarding differential metabolites, cornstalk PC-N2 displayed a positive correlation with isoleucyl-alanine, while exhibiting a negative correlation with deoxyinosine, and the corresponding relative expression levels were + 3.0 and -2.4, respectively. Overall, gas-activated PCs could promote methane production and affect the composition of microbial community.
Collapse
Affiliation(s)
- Ruixia Shen
- Key Laboratory of Agricultural Green and Low-carbon for North China Plain, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zonglu Yao
- Key Laboratory of Agricultural Green and Low-carbon for North China Plain, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiadong Yu
- Key Laboratory of Agricultural Green and Low-carbon for North China Plain, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juan Luo
- Key Laboratory of Agricultural Green and Low-carbon for North China Plain, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Geng
- Key Laboratory of Agricultural Green and Low-carbon for North China Plain, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixin Zhao
- Key Laboratory of Agricultural Green and Low-carbon for North China Plain, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
16
|
Wang G, Fu P, Zhang B, Zhang J, Huang Q, Yao G, Li Q, Dzakpasu M, Zhang J, Li YY, Chen R. Biochar facilitates methanogens evolution by enhancing extracellular electron transfer to boost anaerobic digestion of swine manure under ammonia stress. BIORESOURCE TECHNOLOGY 2023; 388:129773. [PMID: 37722547 DOI: 10.1016/j.biortech.2023.129773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
This study explored the mechanisms by which biochar mitigates ammonia inhibition in anaerobic digestion (AD) of swine manure. Findings show 2-8 g/L exogenous ammonia dosages gradually inhibited AD, leading to decreases in the efficiencies of hydrolysis, acidogenesis and methanogenesis by 3.4-70.8%, 6.0-82.0%, and 4.9-93.8%, respectively. However, biochar addition mitigated this inhibition and facilitated methane production. Biochar enhanced microbial activities related to electron transport and extracellular electron transfer. Moreover, biochar primarily enriched Methanosarcina, which, consequently, upregulated the genes encoding formylmethanofuran dehydrogenase and methenyltetrahydromethanopterin cyclohydrolase for the CO2-reducing methanogenesis pathway by 26.9-40.8%. It is believed that biochar mediated direct interspecies electron transfer between syntrophic partners, thereby enhancing methane production under ammonia stress. Interestingly, biochar removal did not significantly impact the AD performance of the acclimated microbial community. This indicated the pivotal role of biochar in triggering methanogen evolution to mitigate ammonia stress rather than the indispensable function after the enrichment of ammonia-resistance methanogen.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Peng Fu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Bo Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Ji Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Qiuyi Huang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Gaofei Yao
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Mawuli Dzakpasu
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Jianfeng Zhang
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering (Shaanxi Province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
17
|
Wang C, Nakakoji S, Ng TCA, Zhu P, Tsukada R, Tatara M, Ng HY. Acclimatizing waste activated sludge in a thermophilic anaerobic fixed-bed biofilm reactor to maximize biogas production for food waste treatment at high organic loading rates. WATER RESEARCH 2023; 242:120299. [PMID: 37441869 DOI: 10.1016/j.watres.2023.120299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Thermophilic anaerobic digestion (TAD) provides a promising solution for sustainable high-strength waste treatment due to its enhanced methane-rich biogas recovery. However, high organic loading rates (OLR) exceeding 3.0 kgCOD/m3/day and short hydraulic retention times (HRT) below 10 days pose challenges in waste-to-energy conversion during TAD, stemming from volatile fatty acids (VFAs) accumulation and methanogenesis failure. In this study, we implemented a stepwise strategy for acclimatizing waste activated sludge (WAS) in a thermophilic anaerobic fixed-bed biofilm reactor (TA-FBBR) to optimize methanogen populations, thereby enhancing waste-to-energy efficiencies under elevated OLRs in food waste treatment. Results showed that following stepwise acclimatization, the TA-FBBR achieved stable methane production of approximately 5.8 L/L-reactor/day at an ultrahigh OLR of ∼20 kgCOD/m3/day and ∼15 kgVS/m3/day at 6-day HRT in food waste treatment. The average methane yield reached 0.45 m3/kgCODremoval, attaining the theoretical production in TAD. Moreover, VFA concentrations were stabilized below 1000 mg/L at the ultrahigh OLR under 6-day HRT, while maintaining an acetate/propionate ratio of > 1.8 and a VFA/TAK ratio of < 0.3 serving as effective indicators of system stability and methane yield potential. The microbial community analysis revealed that the WAS acclimatization strategy fostered the microbial diversity and abundance of Methanothermobacter and Methanosarcina. Methanosarcina in the biofilm were observed to be twice as abundant as Methanothermobacter, indicating a potential preference for biofilm existence among methanogens. The findings demonstrated an effective strategy, specifically the stepwise acclimatization of WAS in a thermophilic fixed-bed biofilm reactor, to enhance the food waste treatment performance at high OLRs, contributing valuable mechanistic and technical insights for future sustainable high-strength waste management.
Collapse
Affiliation(s)
- Chuansheng Wang
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Sumire Nakakoji
- Kajima Technical Research Institute, 2-19-1 Tobitakyu, Chofushi, Tokyo 182-0036, Japan
| | - Tze Chiang Albert Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore
| | - Peilin Zhu
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Ryohei Tsukada
- Kajima Technical Research Institute, 2-19-1 Tobitakyu, Chofushi, Tokyo 182-0036, Japan
| | - Masahiro Tatara
- Kajima Technical Research Institute, 2-19-1 Tobitakyu, Chofushi, Tokyo 182-0036, Japan
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
18
|
Wang Z, Wang S, Zhuang W, Liu J, Meng X, Zhao X, Zheng Z, Chen S, Ying H, Cai Y. Trace elements' deficiency in energy production through methanogenesis process: Focus on the characteristics of organic solid wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163116. [PMID: 36996981 DOI: 10.1016/j.scitotenv.2023.163116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Excessive or insufficient supplementation of trace elements (TEs) limits the progression of anaerobic digestion. The main reason for this is the lack of sufficient understanding of digestion substrate characteristics, which significantly affects the demand for TEs. In this review, the relationship between TEs requirements and substrate characteristics is discussed. We mainly focus on three aspects. 1) The basis for TE optimization and existing problems: The optimization of TEs often based on the total solids (TS) or volatile solids (VS) of substrates, does not fully consider substrate characteristics. 2) TE deficiency mechanisms for different types of substrates: nitrogen-rich, sulfur-rich, TE-poor, and easily hydrolyzed substrates are the four main types of substrates. The mechanisms underlying TEs deficiency in the different substrates are investigated. 3) Regulation of TE bioavailability: characteristics of substrates affect digestion parameters, which disturb the bioavailability TE. Therefore, methods for regulating bioavailability of TEs are discussed.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Wei Zhuang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jinle Liu
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Shanshuai Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya 572025, China
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China.
| |
Collapse
|