1
|
de Falco G, Sabba F, Ramalingam K, Fillos J. Biofiltration for odor mitigation in water resource recovery facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178593. [PMID: 39864252 DOI: 10.1016/j.scitotenv.2025.178593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/17/2024] [Accepted: 01/18/2025] [Indexed: 01/28/2025]
Abstract
Odor emissions, primarily from anthropogenic activities like waste treatment and industrial processes, pose significant challenges in urban areas, particularly near water resource recovery facilities. While these emissions are generally not toxic, they can adversely affect community wellbeing and investment, prompting stricter regulations in some regions. For example, New York State's hydrogen sulfide guidelines are more stringent than federal standards. Hydrogen sulfide, along with other reduced sulfur compounds, volatile organic compounds, and nitrogen compounds, are among the key odorants produced by water resource recovery facilities. Various methods have been explored to mitigate these odors, including chemical treatments, operational modifications, and air treatment strategies like biofiltration, activated carbon adsorption, and regenerative incineration. Among these, biofiltration stands out as an environmentally friendly option due to its high efficiency in removing hydrogen sulfide and other odorants without the need for chemicals. Biofiltration systems, including biofilters and biotrickling filters, use microorganisms immobilized in a bed of porous media to degrade odorous compounds. Biofilters, which operate with intermittent water supply, are highly effective at total odor removal. In contrast, biotrickling filters, which use continuous nutrient and water flow, are better suited for higher pollutant loads but struggle with compounds of low solubility. Key factors influencing biofilter performance include the empty bed residence time, media type, moisture content, and microbial diversity. This review explores recent advancements in biofilter technology, with a focus on the removal of hydrogen sulfide and organic sulfur compounds. It also highlights real-world applications in water resource recovery facilities and discusses critical design and operational parameters for improving odor control, such as media selection, residence time, pH regulation, and microbial management. Key studies underscore the importance of media composition and nutrient supply in optimizing biofilter performance, especially at higher pollutant concentrations. Understanding these factors will help inform future improvements in odor management for water resource recovery facilities.
Collapse
Affiliation(s)
- Giacomo de Falco
- Department of Civil Engineering, City College of New York, New York, NY 10031, United States
| | - Fabrizio Sabba
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States.
| | - Krish Ramalingam
- Department of Civil Engineering, City College of New York, New York, NY 10031, United States.
| | - John Fillos
- Department of Civil Engineering, City College of New York, New York, NY 10031, United States
| |
Collapse
|
2
|
Yang T, Wang X, Ng HY, Huang S, Bi X, Zheng X, Zhou X. Antibiotic resistance and resistome risks of inhalable bioaerosols at aeration tank of a full-scale wastewater treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136253. [PMID: 39454330 DOI: 10.1016/j.jhazmat.2024.136253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Antibiotic resistome could be aerosolized under wastewater aeration processes, however, their seasonal variation, mobility, hosts, aerosolization behavior, and risk, are largely unknown. Herein, the antibiotic resistant pollution associated with fine particulate matter (PM2.5) from the actual aeration tank (AerT), was analyzed using metagenomic assembly. The antibiotic resistance of AerT-PM2.5 was characterized by significant seasonality. Antibiotic resistance genes (ARGs) in AerT-PM2.5, exhibited higher enrichment and mobility and were harbored more by pathogens than those in upwind-PM2.5, regardless of sampling season. Mobile ARGs were mainly flanked by transposase. Totally, 18 pathogenic antibiotic-resistant bacteria (PARB) carried more than one ARG, including 9 PARB with multiple ARG types. Although wastewater exerted a dominant source contribution for the airborne ARGs (47.31-55.56 %) and PARB (46.18-64.32 %), aeration endowed differential aerosolization capacity for various ARGs and PARB from wastewater. Airborne antibiotic resistome was mainly determined by bacterial community and indirectly influenced by meteorological conditions (i.e., relative humidity). Higher PM2.5-borne resistome risk was observed in AerT than upwind, and the most serious resistome risk of AerT-PM2.5 was found in winter. This study emphasizes the importance of wastewater aeration processes in emission of airborne antibiotic resistome and offers referenced information for mitigating air pollution in wastewater treatment plants.
Collapse
Affiliation(s)
- Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Xuyi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, PR China.
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China.
| | - Xiaolin Zhou
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| |
Collapse
|
3
|
George PBL, Hillary LS, Leclerc S, Cooledge EC, Lemieux J, Duchaine C, Jones DL. Needles in haystacks: monitoring the potential escape of bioaerosolised antibacterial resistance genes from wastewater treatment plants with air and phyllosphere sampling. Can J Microbiol 2024; 70:348-357. [PMID: 38608289 DOI: 10.1139/cjm-2023-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Wastewater treatment plants are well-known point sources of emissions of antibacterial resistance genes (ARGs) into the environment. Although most work to date has focused on ARG dispersal via effluent, aerial dispersal in bioaerosols is a poorly understood, but likely important vector for ARG dispersal. Recent evidence suggests that ARG profiles of the conifer needle phyllosphere could be used to measure bioaerosol dispersal from anthropogenic sources. Here, we assessed airborne dispersal of ARGs from wastewater treatment plants in Wales, UK and Quebec, Canada, using conifer needles as passive bioaerosol monitors. ARG profiles of wastewater were compared to those of conifer phyllosphere using high-throughput qPCR. ARG richness was significantly lower in conifer phyllosphere samples than wastewater samples, though no differences were observed across the dispersal gradients. Mean copy number of ARGs followed a similar trend. ARG profiles showed limited, but consistent patterns with increasing distance from wastewater treatment plants, but these did not align with those of wastewater samples. For example, proportional abundance of aminoglycosides decreased over the dispersal gradient in Wales, whereas mobile genetic elements showed the inverse relationship. In summary, while distinct ARG profiles exist along dispersal gradients, links to those of wastewater were not apparent.
Collapse
Affiliation(s)
- Paul B L George
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie, Quebec City, QC G1V 4G5, Canada
| | - Luke S Hillary
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Samantha Leclerc
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie, Quebec City, QC G1V 4G5, Canada
| | - Emily C Cooledge
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Joanie Lemieux
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie, Quebec City, QC G1V 4G5, Canada
| | - Caroline Duchaine
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie, Quebec City, QC G1V 4G5, Canada
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
- Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
4
|
Zhao S, Liu Y, Chang J, Wang J, Peng H, Cui B, Bai J, Wang Y, Hua L. Bioaerosols in deodorization covers of wastewater treatment plants: Emission characteristics and health risks. CHEMOSPHERE 2024; 353:141552. [PMID: 38408571 DOI: 10.1016/j.chemosphere.2024.141552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Wastewater treatment plants (WWTPs) are the main source of bioaerosol emissions. The cover of deodorization within WWTPs serves not only to manage odors but also to limit the dispersion of bioaerosols. This study investigated the emission characteristics and exposure risks of bioaerosols inside deodorization covers from a WWTP in Northern China. The results revealed that the concentration of bacteria in bioaerosols ranged from 96 ± 8 to 706 ± 45 CFU/m3, with the highest concentration observed in the biochemical reaction tank. The predominant bacterial genera in bioaerosols within the odor control covers were Cetobacterium, Romboutsia, Bacteroides, Lactobacillus, and Tubricibacter, while the dominant fungal genera included Aspergillus, Alternaria, Fusarium, and Cladosporium. The main water-soluble ions in the air were NH4+, Ca2+, SO42-, and Cl-. SO42- was found to promote the survival of Cetobacterium, Brevibacterium, Fusarium, Penicillium, and Filobasidium, while Cl- exhibited inhibitory effects on most microorganisms in bioaerosols. Source tracker analysis indicated that wastewater was the primary source of bioaerosols in the biochemical reaction tank. The non-carcinogenic risk associated with bioaerosols within deodorization covers was less than 1 (2.34 × 10-9 to 3.08 × 10-2). FunGuild fungal functional prediction suggested that the abundance of animal pathogens was highest in the bioaerosols from the anaerobic sedimentation tank. BugBase phenotypic prediction showed that the abundance of potential pathogens in secondary sedimentation tank bioaerosols was the highest. This study effectively revealed the characteristics and sources of bioaerosols in the sewage and sludge treatment area under the deodorization cover, which provided a theoretical basis for enhancing the management and control of bioaerosols.
Collapse
Affiliation(s)
- Shan Zhao
- Beijing Drainage Group Co., LTD, Beijing, 100124, PR China; Beijing Engineering Research Center of Wastewater Resource, Beijing, 100124, PR China.
| | - Yang Liu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Jiang Chang
- Beijing Drainage Group Co., LTD, Beijing, 100124, PR China; Beijing Engineering Research Center of Wastewater Resource, Beijing, 100124, PR China.
| | - Jiawei Wang
- Beijing Drainage Group Co., LTD, Beijing, 100124, PR China; Beijing Engineering Research Center of Wastewater Resource, Beijing, 100124, PR China.
| | - Hao Peng
- Beijing Drainage Group Co., LTD, Beijing, 100124, PR China; Beijing Engineering Research Center of Wastewater Resource, Beijing, 100124, PR China.
| | - Baocong Cui
- Beijing Drainage Group Co., LTD, Beijing, 100124, PR China; Beijing Engineering Research Center of Wastewater Resource, Beijing, 100124, PR China.
| | - Jin Bai
- Beijing Drainage Group Co., LTD, Beijing, 100124, PR China; Beijing Engineering Research Center of Wastewater Resource, Beijing, 100124, PR China.
| | - Yanjie Wang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Linlin Hua
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China; Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, PR China.
| |
Collapse
|