1
|
Mazurais D, Simon V, Auffret P, Cormier A, Dauvé A, Madec L, Tanguy-Guillo B, Gayet N, Fleury E, Le Luyer J. Mutligenerational chronic exposure to near future ocean acidification in European sea bass (Dicentrarchus labrax): Insights into the regulation of the transcriptome in a sensory organ involved in feed intake, the tongue. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106775. [PMID: 39369654 DOI: 10.1016/j.marenvres.2024.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
In this study, we examined the effect of near future ocean acidification (OA) on the transcriptome of a sensory organ in contact with surrounding water, the tongue in adult European sea bass (Dicentrarchus labrax) by mean of RNAseq experiment. We acquired a total of 14.1 Mb quality-trimmed reads covering 18,703 expressed genes from the tongue of fish reared from two generations at actual (pH 8.0 condition) and predicted near-future seawater pH (pH 7.6 condition). Gene ontologies analyses of expressed genes support the evidence that the tongue exhibits biological processes related to the sensory system, tooth mineralization and immune defences among others. Our data revealed only 295 OA-induced regulated genes with 114 up- and 181 down-regulated by OA. Functions over-represented encompass processes involved in organic substance metabolic process, RNA metabolism and especially RNA methylation which, combined with the regulation of some hsp genes expression, suggest a molecular response to stress which might contribute to lingual cell homeostasis under OA. The immune system process is also found enriched within OA-induced regulated genes. With the exception of one fatty acid receptor, known taste perception effectors were not impacted by OA in the tongue. However, a complementary droplet digital PCR approach dedicated to genes involved in gustatory signal transduction revealed the down regulation by OA of pyrimidinergic receptor (p2ry4) transcript expression in the gills of the fish. Combined with scanning electron microscopy analysis, our RNAseq data revealed that OA has no impact on processes related to teeth development and mineralization. Altogether, our data reveal that multigenerational exposure to OA has not a substantially effect on the tongue transcriptome but emphasis should be placed on investigating the potential physiological consequences related to the regulation of genes related to cell stress, immune system and fatty acid sensitivity to conclude on species resilience in face of OA.
Collapse
Affiliation(s)
- David Mazurais
- Univ Brest, CNRS, IRD, IFREMER, UMR 6539, LEMAR, Plouzane, France.
| | - Victor Simon
- Univ Brest, CNRS, IRD, IFREMER, UMR 6539, LEMAR, Plouzane, France
| | - Pauline Auffret
- Ifremer, IRSI, SEBIMER Service Bioinformatique de l'Ifremer, F-29280, Plouzané, France
| | - Alexandre Cormier
- Ifremer, IRSI, SEBIMER Service Bioinformatique de l'Ifremer, F-29280, Plouzané, France
| | - Alexandra Dauvé
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Lauriane Madec
- Univ Brest, CNRS, IRD, IFREMER, UMR 6539, LEMAR, Plouzane, France
| | | | - Nicolas Gayet
- IFREMER, UBO, BEEP, Biology and Ecology of Deep-Sea Ecosystems, 1625 route de Sainte-Anne, Plouzane, 29280, France
| | - Elodie Fleury
- Univ Brest, CNRS, IRD, IFREMER, UMR 6539, LEMAR, Plouzane, France
| | - Jérémy Le Luyer
- Univ Brest, CNRS, IRD, IFREMER, UMR 6539, LEMAR, Plouzane, France
| |
Collapse
|
2
|
Chen H, Feng Y, Cui J, Wang X. Response of CRH system in brain and gill of marine medaka to seawater acidification. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1225-1236. [PMID: 38512395 DOI: 10.1007/s10695-024-01332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Corticotropin-releasing hormone (CRH) is mainly secreted by the hypothalamus to regulate stress when environmental factors change. Gills contact with water directly and may also secrete CRH to maintain local homeostasis. Ocean acidification changes water chemical parameters and is becoming an important environmental stressor for marine fish. The response of brain and gill CRH systems to ocean acidification remains unclear. In this study, marine medaka were exposed to CO2-acidified seawater (440 ppm, 1000 ppm, and 1800 ppm CO2) for 2 h, 4 h, 24 h, and 7 d, respectively. At 2 h and 4 h, the expression of crh mRNA in gills increased with increasing CO2 concentration. Crh protein is expressed mainly in the lamellae cells. crhbp and crhr1 expression also increased significantly. However, at 2 h and 4 h, acidification caused little changes in these genes and Crh protein expression in the brain. At 7 d, Crh-positive cells were detected in the hypothalamus; moreover, Crh protein expression in the whole brain increased. It is suggested that CRH autocrine secretion in gills is responsible for local acid-base regulation rather than systemic mobilization after short-term acidification stress, which may help the rapid regulation of body damage caused by environmental stress.
Collapse
Affiliation(s)
- Haijin Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yaoyi Feng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jinghui Cui
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Xiaojie Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
3
|
Yue Y, Wang Y, Zhang B, Zeng J, Wang Q, Wang C, Peng S. Whole-Genome Methylation Sequencing of Large Yellow Croaker (Larimichthys crocea) Liver Under Hypoxia and Acidification Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:567-579. [PMID: 37450059 DOI: 10.1007/s10126-023-10226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is an important aquaculture species in China. This study analysed whole-genome methylation differences in liver tissues of young fish under different hypoxic and acidification conditions. Differentially methylated regions (DMRs) and differentially methylated genes (DMGs) were identified. Gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) enrichment analyses of DMGs were conducted to explore the mechanism of coping with hypoxic acidification. The main methylation type was CG, accounting for > 70% of total methylation, significantly higher than CHG and CHH methylation types. GO enrichment analysis of DMGs revealed strong enrichment of nervous system development, cell periphery, plasma membrane, cell junction organisation, cell junction, signalling receptor activity, molecular sensor activity, cell-linked tissue junction organisation, cell-cell adhesion and nervous system development. KEGG enrichment analysis of DMR-related genes identified cell adhesion molecules, cortisol synthesis and secretion and aldosterone synthesis and secretion as the three key pathways regulating the physiological responses to hypoxia and acidification. Long-term hypoxic and acidification stress affected the immune system, nervous system and stress responses of large yellow croaker. Whole-genome sequencing analysis of exposed tissues was used to investigate changes that occur in L. crocea in response to hypoxic and acidic conditions at the DNA methylation level. The findings contribute to our comprehensive understanding of functional methylation in large yellow croaker and will support future research on the response mechanisms of this species under different environmental pressures.
Collapse
Affiliation(s)
- Yanfeng Yue
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, People's Republic of China
| | - Yabing Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, People's Republic of China
| | - Bianbian Zhang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, People's Republic of China
| | - Jiao Zeng
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, People's Republic of China
| | - Qian Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, People's Republic of China
| | - Cuihua Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, People's Republic of China.
| | - Shiming Peng
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, People's Republic of China.
| |
Collapse
|