1
|
Jing F, Li H, He J, Zhang Q, Gao X, Zhou D. Application of biochar and selenium together at low dose efficiently reduces mercury and methylmercury accumulation in rice grains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176579. [PMID: 39343393 DOI: 10.1016/j.scitotenv.2024.176579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Irrespective of cost and ecological risk, literatures have reported that both biochar and selenium (Se) alone at high application rate exhibited positive effects on decreasing rice mercury (Hg) uptake in high Hg contaminated paddy soil. In this study, we investigated whether biochar and Se together at low dose could efficiently reduce the rice grain Hg and MeHg accumulation in the slight Hg-contaminated soil. Compared with control (CK), the Hg concentration of grains in the BC3, Se0.5, and BC3 + Se0.5 treatments decreased by 5.4 %, 38.3 %, and 48.5 %, respectively. Co-application of biochar and Se also decreased the methylmercury (MeHg) concentration in rice grains by 29.1-91.6 %. The decrease of Hg and MeHg level in rice grains for biochar and Se treatments could be attributed to the following mechanisms: (1) high Hg (primarily inorganic Hg) adsorption on biochar through its high hydroxyl groups and large specific surface area; (2) Increased dissolved organic carbon and cysteine contents in pore water after biochar application, which reduced the availability of soil Hg through complexation; (3) Decreased bioavailability of Hg in soil due to the formation of HgSe precipitation which inhibited Hg uptake and translation by rice plant; (4) Both biochar and Se facilitated the reduction of MeHg in soil. Our results indicate that co-application of biochar and Se at low dose is a promising method to effectively mitigate Hg accumulation in rice grains from the slight Hg-contaminated soil.
Collapse
Affiliation(s)
- Feng Jing
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jianzhou He
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; Department of Biochemistry, Chemistry & Physics, Georgia Southern University, Savannah, GA 31419, USA
| | - Qingya Zhang
- Jiangsu DDBS Environmental Remediation Co., LTD, Nanjing 210012, PR China
| | - Xuezhen Gao
- Jiangsu DDBS Environmental Remediation Co., LTD, Nanjing 210012, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Qin D, Luo G, Qin A, He T, Wu P, Yin D. Selenium-phosphorus modified biochar reduces mercury methylation and bioavailability in agricultural soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123451. [PMID: 38281574 DOI: 10.1016/j.envpol.2024.123451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Biochar is a frequently employed for solidifying and stabilizing mercury (Hg) contamination in soil. However, it often results in an elevated presence of soil methylmercury (MeHg), which introduces new environmental risks. Consequently, there is a necessity for developing a safer modified biochar for use in Hg-contaminated soil. This study employed sodium selenite (at a safe dosage for soil) and hydroxyapatite to modify straw biochar (BC) based on the interaction between selenium (Se) and phosphorus (P). This process led to the formation of Se-modified biochar (Se-BC), P-modified biochar (P-BC), and Se and P co-modified biochar (Se-P-BC). Additionally, solvent adsorption experiments and pot experiments (BC/soil mass ratio: 0.5 %) were conducted to investigate the impacts of these soil amendments on soil Hg methylation and bioavailability. Se and P co-modification substantially increased the surface area, pore volume, and Hg adsorption capacity of BC. BC treatment increased the simulated gastric acid-soluble Hg, organo-chelated Hg, and MeHg in the soil. Conversely, Se-P-BC significantly reduced these forms of Hg in the soil, indicating that Se-P-BC can transform soil Hg into less bioavailable states. Among the different biochar treatments, Se-P-BC exhibited the most pronounced reductions in soil MeHg, total Hg, and MeHg in water spinach, achieving reductions of 63 %, 71 %, and 70 %, respectively. The co-modification of Se and P displayed a synergistic reduction effect in managing soil Hg pollution, which is associated with the increase of available Se in the soil due to phosphorus addition. The significantly reduced dissolved organic carbon and the abnormally high SO42- concentration in the soil of Se-P-BC treatment also inhibited Hg methylation and bioavailability in the soil. In summary, Se-P-BC substantially increased reduction percentage in plant Hg content while mitigating the risk of secondary pollution arising from elevated soil MeHg.
Collapse
Affiliation(s)
- Dongqiang Qin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Guangjun Luo
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Aming Qin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China.
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China
| |
Collapse
|
3
|
Hu S, Zhang Y, Meng H, Yang Y, Chen G, Wang Q, Cheng K, Guo C, Li X, Liu T. Transformation and migration of Hg in a polluted alkaline paddy soil during flooding and drainage processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123471. [PMID: 38336140 DOI: 10.1016/j.envpol.2024.123471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Mercury (Hg) contamination in paddy soils poses a health risk to rice consumers and the environmental behavior of Hg determines its toxicity. Thus, the variations of Hg speciation are worthy of exploring. In this study, microcosm and pot experiments were conducted to elucidate Hg transformation, methylation, bioaccumulation, and risk coupled with biogeochemical cycling of key elements in a Hg-polluted alkaline paddy soil. In microcosm and pot experiments, organic- and sulfide-bound and residual Hg accounted for more than 98% of total Hg, and total contents of dissolved, exchangeable, specifically adsorbed, and fulvic acid-bound Hg were less than 2% of total Hg, indicating a low mobility and environmental risk of Hg. The decrease of pH aroused from Fe(III), SO42-, and NO3- reduction promoted Hg mobility, whereas the increase of pH caused by Fe(II), S2-, and NH4+ oxidation reduced available Hg contents. Moreover, Fe-bearing minerals reduction and organic matter consumption promoted Hg mobility, whereas the produced HgS and Fe(II) oxidation increased Hg stability. During flooding, a fraction of inorganic Hg (IHg) could be transported into methylmercury (MeHg), and during drainage, MeHg would be converted back into IHg. After planting rice in an alkaline paddy soil, available Hg was below 0.3 mg kg-1. During rice growth, a portion of available Hg transport from paddy soil to rice, promoting Hg accumulation in rice grains. After rice ripening, IHg levels in rice tissues followed the trend: root > leaf > stem > grain, and IHg content in rice grain exceed 0.02 mg kg-1, but MeHg content in rice grain meets daily intake limit (37.45 μg kg-1). These results provide a basis for assessing the environmental risks and developing remediation strategies for Hg-contaminated redox-changing paddy fields as well as guaranteeing the safe production of rice grains.
Collapse
Affiliation(s)
- Shiwen Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yufan Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hanbing Meng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kuan Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chao Guo
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
4
|
Huang Y, Yi J, Huang Y, Zhong S, Zhao B, Zhou J, Wang Y, Zhu Y, Du Y, Li F. Insights into the reduction of methylmercury accumulation in rice grains through biochar application: Hg transformation, isotope fractionation, and transcriptomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122863. [PMID: 37925005 DOI: 10.1016/j.envpol.2023.122863] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Methylmercury (MeHg), a potent neurotoxin, easily moves from the soil into rice plants and subsequently accumulates within the grains. Although biochar can reduce MeHg accumulation in rice grains, the precise mechanism underlying biochar-mediated responses to mercury (Hg) stress, specifically regarding MeHg accumulation in rice, remains poorly understood. In the current study, we employed a 4% biochar amendment to remediate Hg-contaminated paddy soil, elucidate the impacts of biochar on MeHg accumulation through a comprehensive analysis involving Hg isotopic fractionation and transcriptomic analyses. The results demonstrated that biochar effectively lowered the levels of MeHg in paddy soils by decreasing bioavailable Hg and microbial Hg methylation. Furthermore, biochar reduced the uptake and translocation of MeHg in rice plants, ultimately leading to a reduction MeHg accumulation in rice grains. During the process of total mercury (THg) uptake, biochar induced a more pronounced negative isotope fractionation magnitude, whereas the effect was less pronounced during the upward transport of THg. Conversely, biochar caused a more pronounced positive isotope fractionation magnitude during the upward transport of MeHg. Transcriptomics analyses revealed that biochar altered the expression levels of genes associated with the metabolism of cysteine, glutathione, and metallothionein, cell wall biogenesis, and transport, which possibly enhance the sequestration of MeHg in rice roots. These findings provide novel insights into the effects of biochar application on Hg transformation and transport, highlighting its role in mitigating MeHg accumulation in rice.
Collapse
Affiliation(s)
- Yingmei Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, China
| | - Jicai Yi
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yao Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Songxiong Zhong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Bin Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Norwegian University of Life Sciences, Department of Environmental Sciences, 5003, N-1432 Ås, Norway
| | - Jing Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yuxuan Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yiwen Zhu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yanhong Du
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
5
|
Qin A, Ran S, He T, Yin D, Xu Y. The Effects of Different Soil Component Couplings on the Methylation and Bioavailability of Mercury in Soil. TOXICS 2023; 11:942. [PMID: 37999594 PMCID: PMC10674802 DOI: 10.3390/toxics11110942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Soil composition can influence the chemical forms and bioavailability of soil mercury (Hg). However, previous studies have predominantly focused on the influence of individual components on the biogeochemical behavior of soil Hg, while the influence of various component interactions among several individual factors remain unclear. In this study, artificial soil was prepared by precisely regulating its components, and a controlled potted experiment was conducted to investigate the influence of various organic and inorganic constituents, as well as different soil textures resulting from their coupling, on soil Hg methylation and its bioavailability. Our findings show that inorganic components in the soils primarily exhibit adsorption and fixation effects on Hg, thereby reducing the accumulation of total mercury (THg) and methylmercury (MeHg) in plants. It is noteworthy that iron sulfide simultaneously resulted in an increase in soil MeHg concentration (277%). Concentrations of THg and MeHg in soil with peat were lower in rice but greater in spinach. A correlation analysis indicated that the size of soil particles was a crucial factor affecting the accumulation of Hg in plants. Consequently, even though fulvic acid activated soil Hg, it significantly increased the proportion of soil particles smaller than 100.8 μm, thus inhibiting the accumulation of Hg in plants, particularly reducing the concentration of THg (93%) and MeHg (85%) in water spinach. These results demonstrate that the interaction of organic and inorganic components can influence the biogeochemical behavior of soil Hg not only through their chemical properties, but also by altering the soil texture.
Collapse
Affiliation(s)
- Aming Qin
- Key Laboratory of Karst Georesources and Environment, Guizhou University, Ministry of Education, Guiyang 550025, China; (A.Q.); (S.R.); (D.Y.)
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Shu Ran
- Key Laboratory of Karst Georesources and Environment, Guizhou University, Ministry of Education, Guiyang 550025, China; (A.Q.); (S.R.); (D.Y.)
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment, Guizhou University, Ministry of Education, Guiyang 550025, China; (A.Q.); (S.R.); (D.Y.)
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment, Guizhou University, Ministry of Education, Guiyang 550025, China; (A.Q.); (S.R.); (D.Y.)
| | - Yiyuan Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China;
| |
Collapse
|
6
|
He Y, Yang X, Li Z, Wang T, Ma C, Wen X, Chen W, Zhang C. Aging rice straw reduces the bioavailability of mercury and methylmercury in paddy soil. CHEMOSPHERE 2023; 339:139711. [PMID: 37536532 DOI: 10.1016/j.chemosphere.2023.139711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Straw amendment is a prevalent agricultural practice worldwide, which can reduce air pollution and improve soil fertility. However, the impact of aging straw amendment on the bioavailability of mercury (Hg) and methylmercury (MeHg) in paddy soil remains unclear. To investigate this, incubation experiments were conducted using the diffusive gradient in thin-film technique. Results showed that amendments of dry-wet aging (DRS), photochemical aging (LRS), and freeze-thaw aging rice straw (FRS) reduced the bioavailable MeHg in paddy soil by 2.2-27.6%, 13.5-69.8%, and 23.5-86.1%, respectively, compared to fresh rice straw (RS) amendment. This result could be due to changes in soil properties such as soil pH and overlying water Fe and Mn as well as microbial abundance (including Clostridiaceae, Firmicutes, and Actinobacteriota). Simultaneously, The LRS and FRS amendments reduced bioavailable Hg in paddy soil by 20.0-40.8% and 17.1-48.6%, respectively, while DRS increased the bioavailable Hg by 15.8-120.0%. This could be attributed to changes in soil oxidation-reduction potential and overlying water SO42- content. Additionally, the results of sand culture experiments showed that the concentrations of Hg uptake by rice seedlings were 97.1-118.2%, 28.1-35.6%, and 198.0-217.1% higher in dissolved organic matter (DOM) derived from DRS, LRS, and FRS than RS, indicating that aging straw leached DOM may promote the Hg bioavailable when straw amendment. This result could be due to lower molecular weight and higher CO functional group content. These results provide new insight into how aging straw amendment affects the bioavailability of Hg and MeHg in paddy soil under different climates.
Collapse
Affiliation(s)
- Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| |
Collapse
|