1
|
Wei Z, Zhang B, Xu R, Li H, Chen A, Wei C, Wu H. Mixotrophic denitrification using thiocyanate as an electron donor: Role of thiocyanate under different C/N conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124264. [PMID: 39862820 DOI: 10.1016/j.jenvman.2025.124264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/20/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Thiocyanate (SCN-) is a highly toxic reducing inorganic compound commonly found in various nitrogen-rich wastewater and is also a promising electron donor for mixotrophic denitrification. However, its extent of involvement in mixotrophic denitrification under conditions of carbon limitation or excess remains unclear. In this study, five reactors were constructed to investigate the participation and microbial mechanisms of SCN- in mixotrophic denitrification under high C/N and low C/N conditions. The results showed that under low C/N conditions, SCN⁻ synergizes with organic electron donors to enhance denitrification, with mixotrophic systems exhibiting higher electron utilization efficiency and achieving 1.12 times the TN removal rate of autotrophic and heterotrophic systems combined. Under high C/N conditions, an ample supply of electron donors achieve 100% nitrate removal; however, SCN⁻ also participates in denitrification, competing with organic electron donors for NO3--N, which leads to the waste of organic matter. Additionally, high-throughput sequencing revealed that under low C/N mixotrophic conditions, SCN⁻ effectively promoted the growth of SCN⁻-degrading microorganisms such as Thiobacillus, with its abundance increasing from 0% to 8.86%, approximately 1.85 times higher than under autotrophic conditions. This enhancement strengthened the sulfur and nitrogen metabolic capabilities of the microbial community, enabling the system to utilize SCN- more fully for denitrification. This study provides novel insights for reducing the addition of external organic matter to nitrogen-rich wastewater containing SCN-, offering theoretical and technical support for energy-saving and emission reduction in denitrification processes of actual industrial wastewater treatment.
Collapse
Affiliation(s)
- Zhuocheng Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Bin Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Rui Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Haoling Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Acong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, 361024, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
2
|
Jiang H, Xie X, Li J, Jiang Z, Pi K, Wang Y. Metagenomic and FT-ICR MS insights into the mechanism for the arsenic biogeochemical cycling in groundwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135047. [PMID: 38959833 DOI: 10.1016/j.jhazmat.2024.135047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Arsenic (As) is a groundwater contaminant of global concern. The degradation of dissolved organic matter (DOM) can provide a reducing environment for As release. However, the interaction of DOM with local microbial communities and how different sources and types of DOM influence the biotransformation of As in aquifers is uncertain. This study used optical spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), metagenomics, and structural equation modeling (SEM) to demonstrate the how the biotransformation of As in aquifers is promoted. The results indicated that the DOM in high-As groundwater is dominated by highly unsaturated low-oxygen(O) compounds that are quite humic and stable. Metagenomics analysis indicated Acinetobacter, Pseudoxanthomonas, and Pseudomonas predominate in high-As environments; these genera all contain As detoxification genes and are members of the same phylum (Proteobacteria). SEM analyses indicated the presence of Proteobacteria is positively related to highly unsaturated low-O compounds in the groundwater and conditions that promote arsenite release. The results illustrate how the biogeochemical transformation of As in groundwater systems is affected by DOM from different sources and with different characteristics.
Collapse
Affiliation(s)
- Honglin Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xianjun Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China.
| | - Junxia Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Kunfu Pi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
3
|
Feng YX, Tian P, Li CZ, Hu XD, Lin YJ. Elucidating the intricacies of the H 2S signaling pathway in gasotransmitters: Highlighting the regulation of plant thiocyanate detoxification pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116307. [PMID: 38593497 DOI: 10.1016/j.ecoenv.2024.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
In recent decades, there has been increasing interest in elucidating the role of sulfur-containing compounds in plant metabolism, particularly emphasizing their function as signaling molecules. Among these, thiocyanate (SCN-), a compound imbued with sulfur and nitrogen, has emerged as a significant environmental contaminant frequently detected in irrigation water. This compound is known for its potential to adversely impact plant growth and agricultural yield. Although adopting exogenous SCN- as a nitrogen source in plant cells has been the subject of thorough investigation, the fate of sulfur resulting from the assimilation of exogenous SCN- has not been fully explored. There is burgeoning curiosity in probing the fate of SCN- within plant systems, especially considering the possible generation of the gaseous signaling molecule, hydrogen sulfide (H2S) during the metabolism of SCN-. Notably, the endogenous synthesis of H2S occurs predominantly within chloroplasts, the cytosol, and mitochondria. In contrast, the production of H2S following the assimilation of exogenous SCN- is explicitly confined to chloroplasts and mitochondria. This phenomenon indicates complex interplay and communication among various subcellular organelles, influencing signal transduction and other vital physiological processes. This review, augmented by a small-scale experimental study, endeavors to provide insights into the functional characteristics of H2S signaling in plants subjected to SCN--stress. Furthermore, a comparative analysis of the occurrence and trajectory of endogenous H2S and H2S derived from SCN--assimilation within plant organisms was performed, providing a focused lens for a comprehensive examination of the multifaceted roles of H2S in rice plants. By delving into these dimensions, our objective is to enhance the understanding of the regulatory mechanisms employed by the gasotransmitter H2S in plant adaptations and responses to SCN--stress, yielding invaluable insights into strategies for plant resilience and adaptive capabilities.
Collapse
Affiliation(s)
- Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China; Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology (Guangzhou), Jiangmen, Guangdong 529199, People's Republic of China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541004, People's Republic of China.
| | - Peng Tian
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Cheng-Zhi Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Xiao-Dong Hu
- Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology (Guangzhou), Jiangmen, Guangdong 529199, People's Republic of China
| | - Yu-Juan Lin
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541004, People's Republic of China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, People's Republic of China.
| |
Collapse
|
4
|
Buda DM, Szekeres E, Tudoran LB, Esclapez J, Banciu HL. Genome-wide transcriptional response to silver stress in extremely halophilic archaeon Haloferax alexandrinus DSM 27206 T. BMC Microbiol 2023; 23:381. [PMID: 38049746 PMCID: PMC10694973 DOI: 10.1186/s12866-023-03133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The extremely halophilic archaeon Haloferax (Hfx.) alexandrinus DSM 27206 T was previously documented for the ability to biosynthesize silver nanoparticles while mechanisms underlying its silver tolerance were overlooked. In the current study, we aimed to assess the transcriptional response of this haloarchaeon to varying concentrations of silver, seeking a comprehensive understanding of the molecular determinants underpinning its heavy metal tolerance. RESULTS The growth curves confirmed the capacity of Hfx. alexandrinus to surmount silver stress, while the SEM-EDS analysis illustrated the presence of silver nanoparticles in cultures exposed to 0.5 mM silver nitrate. The RNA-Seq based transcriptomic analysis of Hfx. alexandrinus cells exposed to 0.1, 0.25, and 0.5 mM silver nitrate revealed the differential expression of multiple sets of genes potentially employed in heavy-metal stress response, genes mostly related to metal transporters, basic metabolism, oxidative stress response and cellular motility. The RT-qPCR analysis of selected transcripts was conducted to verify and validate the generated RNA-Seq data. CONCLUSIONS Our results indicated that copA, encoding the copper ATPase, is essential for the survival of Hfx. alexandrinus cells in silver-containing saline media. The silver-exposed cultures underwent several metabolic adjustments that enabled the activation of enzymes involved in the oxidative stress response and impairment of the cellular movement capacity. To our knowledge, this study represents the first comprehensive analysis of gene expression in halophillic archaea facing increased levels of heavy metals.
Collapse
Grants
- PN-III-P4-ID-PCE-2020-1559 Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCD
- PN-III-P4-ID-PCE-2020-1559 Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCD
- PN-III-P4-ID-PCE-2020-1559 Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCD
- PN-III-P4-ID-PCE-2020-1559 Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCD
- VIGRO-016 Vicerrectorado de Investigación y Transferencia de Conocimiento of the University of Alicante
- Ministry of Research, Innovation and Digitization, CNCS/CCCDI – UEFISCD
Collapse
Affiliation(s)
- Doriana Mădălina Buda
- Doctoral School of Integrative Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Edina Szekeres
- Institute of Biological Research Cluj, NIRDBS, Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Lucian Barbu Tudoran
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Cluj-Napoca, Romania
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Julia Esclapez
- Biochemistry and Molecular Biology and Soil and Agricultural Chemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Alicante, Spain
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Cluj-Napoca, Romania.
- Emil G. Racoviță Institute, Babeș-Bolyai University, Cluj-Napoca, Romania.
| |
Collapse
|