1
|
Mou R, Jian Y, Zhou D, Li J, Yan Y, Tan B, Xu Z, Cui X, Li H, Zhang L, Xu H, Xu L, Wang L, Liu S, Yuan Y, Li J, Wang L, You C, Sardans J, Peñuelas J. Divergent responses of woody plant leaf and root non-structural carbohydrates to nitrogen addition in China: Seasonal variations and ecological implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175425. [PMID: 39134261 DOI: 10.1016/j.scitotenv.2024.175425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Plant non-structural carbohydrates (NSCs), which largely comprise starch and soluble sugars, are essential energy reserves to support plant growth and physiological functions. While it is known that increasing global deposition of nitrogen (N) affects plant concentration of NSCs, quantification of seasonal responses and drivers of woody species leaf and root NSCs to N addition at larger spatial scales remains lacking. Here, we systematically analyzed data from 53 field experiments distributed across China, comprising 1202 observations, to test for effects of N addition on woody plant leaf and root NSCs across and within growing and non-growing seasons. We found (1) no overall effects of N addition on the concentrations of leaf and root NSCs, soluble sugars or starch during the growing season or the non-growing season for leaves. However, N addition decreased root NSC and starch concentrations by 13.8 % and 39.0 %, respectively, and increased soluble sugars concentration by 15.0 % during the non-growing season. (2) Shifts in leaf NSC concentration under N addition were driven by responses by soluble sugars in both seasons, while shifts in root NSC were driven by soluble sugars in the non-growing season and starch and soluble sugars in the growing season. (3) Relationships between N, carbon, and phosphorus stoichiometry with leaf and root NSCs indicated effects of N addition on woody plant NSCs allocation through impacts on plant photosynthesis, respiration, and growth. (4) Effects of N addition on leaf and root NSCs varied with plant functional types, where effects were more pronounced in roots than in leaves during the non-growing season. Overall, our results reveal divergent responses of woody plant leaf and root NSCs to N addition within non-growing season and highlight the role of ecological stoichiometry and plant functional types in woody plant allocation patterns of NSCs in response to ongoing N deposition under global change.
Collapse
Affiliation(s)
- Rui Mou
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Jian
- Sichuan Academy of Forestry, Ecological Restoration and Conservation for Forest and Wetland Key Laboratory of Sichuan Province, Chengdu 610081, China
| | - Dengjie Zhou
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jihong Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Yan
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Tan
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenfeng Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinglei Cui
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Han Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongwei Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Sining Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaling Yuan
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiao Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Lihua Wang
- College of Resources and Environment, Aba Teachers University, Wenchuan, Sichuan 623002, China.
| | - Chengming You
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Paoletti E, Pagano M, Zhang L, Badea O, Hoshika Y. Allocation of Nutrients and Leaf Turnover Rate in Poplar under Ambient and Enriched Ozone Exposure and Soil Nutrient Manipulation. BIOLOGY 2024; 13:232. [PMID: 38666844 PMCID: PMC11048010 DOI: 10.3390/biology13040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
An excess of ozone (O3) is currently stressing plant ecosystems and may negatively affect the nutrient use of plants. Plants may modify leaf turnover rates and nutrient allocation at the organ level to counteract O3 damage. We investigated leaf turnover rate and allocation of primary (C, N, P, K) and secondary macronutrients (Ca, S, Mg) under various O3 treatments (ambient concentration, AA, with a daily hourly average of 35 ppb; 1.5 × AA; 2.0 × AA) and fertilization levels (N: 0 and 80 kg N ha-1 y-1; P: 0 and 80 kg N ha-1 y-1) in an O3-sensitive poplar clone (Oxford: Populus maximowiczii Henry × P. berolinensis Dippel) in a Free-Air Controlled Exposure (FACE) experiment. The results indicated that both fertilization and O3 had a significant impact on the nutrient content. Specifically, fertilization and O3 increased foliar C and N contents (+5.8% and +34.2%, respectively) and root Ca and Mg contents (+46.3% and +70.2%, respectively). Plants are known to increase the content of certain elements to mitigate the damage caused by high levels of O3. The leaf turnover rate was accelerated as a result of increased O3 exposure, indicating that O3 plays a main role in influencing this physiological parameter. A PCA result showed that O3 fumigation affected the overall allocation of primary and secondary elements depending on the organ (leaves, stems, roots). As a conclusion, such different patterns of element allocation in plant leaves in response to elevated O3 levels can have significant ecological implications.
Collapse
Affiliation(s)
- Elena Paoletti
- IRET-CNR, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy; (E.P.); (Y.H.)
| | - Mario Pagano
- IRET-CNR, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy; (E.P.); (Y.H.)
| | - Lu Zhang
- College of Landscape and Architecture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China;
| | - Ovidiu Badea
- National Institute for Research and Development in Forestry ‘Marin Drăcea’, 128, Eroilor Bvd., 077190 Voluntari, Romania;
- Faculty of Silviculture and Forest Engineering, Transilvania University, 1, Ludwig van Beethoven Street, 500123 Brasov, Romania
| | - Yasutomo Hoshika
- IRET-CNR, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy; (E.P.); (Y.H.)
| |
Collapse
|