1
|
Jiménez T, Domínguez-Castillo A, Fernández de Larrea-Baz N, Lucas P, Sierra MÁ, Salas-Trejo D, Llobet R, Martínez I, Pino MN, Martínez-Cortés M, Pérez-Gómez B, Pollán M, Lope V, García-Pérez J. Residential exposure to traffic pollution and mammographic density in premenopausal women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172463. [PMID: 38615764 DOI: 10.1016/j.scitotenv.2024.172463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Mammographic density (MD) is the most important breast cancer biomarker. Ambient pollution is a carcinogen, and its relationship with MD is unclear. This study aims to explore the association between exposure to traffic pollution and MD in premenopausal women. METHODOLOGY This Spanish cross-sectional study involved 769 women attending gynecological examinations in Madrid. Annual Average Daily Traffic (AADT), extracted from 1944 measurement road points provided by the City Council of Madrid, was weighted by distances (d) between road points and women's addresses to develop a Weighted Traffic Exposure Index (WTEI). Three methods were employed: method-1 (1dAADT), method-2 (1dAADT), and method-3 (e1dAADT). Multiple linear regression models, considering both log-transformed percentage of MD and untransformed MD, were used to estimate MD differences by WTEI quartiles, through two strategies: "exposed (exposure buffers between 50 and 200 m) vs. not exposed (>200 m)"; and "degree of traffic exposure". RESULTS Results showed no association between MD and traffic pollution according to buffers of exposure to the WTEI (first strategy) for the three methods. The highest reductions in MD, although not statistically significant, were detected in the quartile with the highest traffic exposure. For instance, method-3 revealed a suggestive inverse trend (eβQ1 = 1.23, eβQ2 = 0.96, eβQ3 = 0.85, eβQ4 = 0.85, p-trend = 0.099) in the case of 75 m buffer. Similar non-statistically significant trends were observed with Methods-1 and -2. When we examined the effect of traffic exposure considering all the 1944 measurement road points in every participant (second strategy), results showed no association for any of the three methods. A slightly decreased MD, although not significant, was observed only in the quartile with the highest traffic exposure: eβQ4 = 0.98 (method-1), and eβQ4 = 0.95 (methods-2 and -3). CONCLUSIONS Our results showed no association between exposure to traffic pollution and MD in premenopausal women. Further research is needed to validate these findings.
Collapse
Affiliation(s)
- Tamara Jiménez
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid (UAM), Madrid, Spain; HM CINAC (Centro Integral de Neurociencias AC), Hospital Universitario Puerta del Sur, Fundación HM Hospitales, Móstoles, Spain
| | - Alejandro Domínguez-Castillo
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain.
| | - Nerea Fernández de Larrea-Baz
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Pilar Lucas
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain.
| | - María Ángeles Sierra
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Dolores Salas-Trejo
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain; Valencian Breast Cancer Screening Program, General Directorate of Public Health, Valencia, Spain; Center for Public Health Research CSISP, FISABIO, Valencia, Spain.
| | - Rafael Llobet
- Institute of Computer Technology, Universitat Politècnica de València, Valencia, Spain.
| | - Inmaculada Martínez
- Valencian Breast Cancer Screening Program, General Directorate of Public Health, Valencia, Spain; Center for Public Health Research CSISP, FISABIO, Valencia, Spain.
| | - Marina Nieves Pino
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Ayuntamiento de Madrid, Madrid, Spain.
| | - Mercedes Martínez-Cortés
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Ayuntamiento de Madrid, Madrid, Spain.
| | - Beatriz Pérez-Gómez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Marina Pollán
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Virginia Lope
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| |
Collapse
|