Jiang Y, Zhang X, An L, Liu Y. A novel biochar-augmented enzymatic process for conversion of food waste to biofertilizers: Planting trial with leafy vegetable.
BIORESOURCE TECHNOLOGY 2024;
399:130554. [PMID:
38460565 DOI:
10.1016/j.biortech.2024.130554]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
The present study developed a novel biochar-augmented enzymatic approach for fast conversion of food waste to solid and liquid biofertilizers. By augmented with 10 % of biochar and mediated with 5 % of food waste-derived hydrolytic enzymes mixture (i.e. fungal mash), 100 kg of food waste could be converted into 22.3 kg of solid biofertilizer with a water content of 30 % and 55.0 kg of liquid biofertilizer, which fulfilled Chinese national standards for solid and liquid organic biofertilizers, respectively. Field plantation results showed that the Pak Choi grown on food waste-derived biofertilizers was comparable with that on commercial ones, in terms of the vegetable productivity and nutrient contents. It was further revealed that the application of food waste-derived biofertilizers did not change soil chemical properties but enriched microbial diversity. This study clearly indicated that the biochar-augmented enzymatic approach for food waste conversion to biofertilizers was technically feasible and economically viable towards circular agriculture economy.
Collapse