1
|
Li J, Pei S, Feng L, Liu J, Zheng Q, Liu X, Ruan Y, Hu W, Zhang L, Niu J, Tian T. Effects of Long-Term Heavy Metal Exposure on the Species Diversity, Functional Diversity, and Network Structure of Oral Mycobiome. Microorganisms 2025; 13:622. [PMID: 40142515 PMCID: PMC11945009 DOI: 10.3390/microorganisms13030622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Oral fungal homeostasis is closely related to the state of human health, and its composition is influenced by various factors. At present, the effects of long-term soil heavy metal exposure on the oral fungi of local populations have not been adequately studied. In this study, we used inductively coupled plasma-mass spectrometry (ICP-MS) to detect heavy metals in agricultural soils from two areas in Gansu Province, northwestern China. ITS amplicon sequencing was used to analyze the community composition of oral buccal mucosa fungi from local village residents. Simultaneously, the functional annotation of fungi was performed using FUNGuild, and co-occurrence networks were constructed to analyze the interactions of different functional fungi. The results showed that the species diversity of the oral fungi of local populations in the soil heavy metal exposure group was lower than that of the control population. The relative abundance of Apiotrichum and Cutaneotrichosporon was higher in the exposure group than in the control group. In addition, Cutaneotrichosporon is an Animal Pathogen, which may lead to an increased probability of disease in the exposure group. Meanwhile, there were significant differences in the co-occurrence network structure between the two groups. The control group had a larger and more stable network than the exposure group. Eight keystone taxa were observed in the network of the control group, while none were observed in that of the exposure group. In conclusion, heavy metal exposure may increase the risk of diseases associated with Apiotrichum and Cutaneotrichosporon infection in the local populations. It can also lead to the loss of keystone taxa and the reduced stability of the oral fungal network. The above results illustrated that heavy metal exposure impairs oral fungal interactions in the population. This study extends our understanding of the biodiversity of oral fungi in the population and provides new insights for further studies on the factors influencing oral fungal homeostasis.
Collapse
Affiliation(s)
- Jia Li
- School of Public Health, Lanzhou University, Lanzhou 730020, China; (J.L.); (S.P.); (J.L.); (Q.Z.); (X.L.); (Y.R.); (L.Z.)
| | - Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou 730020, China; (J.L.); (S.P.); (J.L.); (Q.Z.); (X.L.); (Y.R.); (L.Z.)
| | - Lu Feng
- School of Stomatology, Lanzhou University, Lanzhou 730020, China;
| | - Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou 730020, China; (J.L.); (S.P.); (J.L.); (Q.Z.); (X.L.); (Y.R.); (L.Z.)
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou 730020, China; (J.L.); (S.P.); (J.L.); (Q.Z.); (X.L.); (Y.R.); (L.Z.)
| | - Xingrong Liu
- School of Public Health, Lanzhou University, Lanzhou 730020, China; (J.L.); (S.P.); (J.L.); (Q.Z.); (X.L.); (Y.R.); (L.Z.)
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou 730020, China; (J.L.); (S.P.); (J.L.); (Q.Z.); (X.L.); (Y.R.); (L.Z.)
| | - Weigang Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730020, China;
| | - Li Zhang
- School of Public Health, Lanzhou University, Lanzhou 730020, China; (J.L.); (S.P.); (J.L.); (Q.Z.); (X.L.); (Y.R.); (L.Z.)
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou 730020, China; (J.L.); (S.P.); (J.L.); (Q.Z.); (X.L.); (Y.R.); (L.Z.)
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou 730020, China; (J.L.); (S.P.); (J.L.); (Q.Z.); (X.L.); (Y.R.); (L.Z.)
| |
Collapse
|
2
|
Yang S, Liu B, Wang L, Duran R. Dispatched microbial community assembly processes driving ecological succession during phytostabilization of mercury-rich tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125376. [PMID: 39581369 DOI: 10.1016/j.envpol.2024.125376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/05/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Phytostabilization is an important way for the remediation of mine tailings, but the associated microbial processes and community succession remain largely unknown. In this study, we investigated the assembly mechanisms maintaining the core and satellite subcommunities diversity during phytostabilizaion of a mercury-rich mine tailings. The contents of total Hg and methylmercury decreased with a concomitant increase of total and available phosphorus content along the successive remediation stages. Microbial community composition, profiled by 16S rRNA gene sequencing, revealed amplicon sequence variants (ASVs) that were separated according to their abundance within either the core community or the satellite community. Community dynamics analysis showed that alpha diversity indices increased for the core community while decreased for the satellite community. Both satellite and core communities were mainly driven by stochastic drift process, and homogeneous selection was relatively higher in shaping the core community organization. The core community included ASVs affiliated to Proteobacteria, Crenarchaeota, Bacteroidota, Verrucomicrobiota, Acidobacteriota, and Myxococcota phyla, which were driven primarily by heterogeneous selection and drift. The satellite community included ASVs affiliated to Acidobacteriota, Ktedonobacteria, Anaerolineae and Verrucomicrobiota phyla, which were mainly influenced by heterogeneous selection. Nineteen taxa and one taxon were identified as keystone taxa for the satellite and core communities respectively. This study provides important insights on the assemble rules within the core and satellite communities, and theoretical guidance for further ecological restoration and management during microbial remediation of metal-mined derelict land.
Collapse
Affiliation(s)
- Shengxiang Yang
- College of Resources and Environment, Zunyi Normal University, Pingan Road, Xinpunew District, Zunyi, China
| | - Bang Liu
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| | - Lu Wang
- College of Resources and Environment, Zunyi Normal University, Pingan Road, Xinpunew District, Zunyi, China
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
3
|
Zhang Q, Jiang C, Jiang L, Qiu R, Wei Z, Wu Q. Cadmium phytoremediation potential of Houttuynia cordata: Insights from growth, uptake, and rhizosphere mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116417. [PMID: 38701655 DOI: 10.1016/j.ecoenv.2024.116417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Cadmium (Cd) pollutes 7.0 % of China's land area. This study examined the potential of Houttuynia cordata for Cd phytoremediation because of its ability to accumulate Cd in its growth matrix. H. cordata were planted in plastic pots filled with paddy field soils having low (LCd), medium (MCd), and high (HCd) Cd levels of 0.19, 0.69, and 2.91 mg/kg, respectively. After six months of growth, harvested plant parts were evaluated for Cd uptake and tolerance mechanisms. Metabolomics and metagenomics approaches were employed to investigate the soil rhizosphere mechanism. Results showed that the average plant biomass increased as soil Cd increased. The biomass Cd contents surpassed the allowable Cd limits for food (≤ 0.2 mg/kg) and medicinal uses (≤ 0.3 mg/kg). Cd contents were higher in H. cordata roots (30.59-86.27 mg/kg) than in other plant parts (0.63-2.90 mg/kg), with significantly increasing values as Cd soil level increased. Phenolic acids, lipids, amino acids and derivatives, organic acids, and alkaloids comprised the majority (69 in MCd vs HCd and 73 % in LCd vs HCd) of the shared upregulated metabolites. In addition, 13 metabolites specific to H. cordata root exudates were significantly increased. The top two principal metabolic pathways were arginine and proline metabolism, and beta-alanine metabolism. H. cordata increased the abundance of Firmicutes and Glomeromycota across all three Cd levels, and also stimulated the growth of Patescibacteria, Rozellomycota, and Claroideoglomus in HCd. Accordingly, H. cordata demonstrated potential for remediation of Cd-contaminated soils, and safety measures for its production and food use must be highly considered.
Collapse
Affiliation(s)
- QingQing Zhang
- College of Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Cheng'Ai Jiang
- College of Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, Guangdong 510642, China.
| | - LuoYan Jiang
- College of Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - RongLiang Qiu
- College of Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, Guangdong 510642, China
| | - ZeBin Wei
- College of Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, Guangdong 510642, China
| | - QiTang Wu
- College of Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, Guangdong 510642, China
| |
Collapse
|
4
|
Xue C, Du Y, Allinson G, Zeng X, Li X, Fang H. Metals and polycyclic aromatic hydrocarbons pollutants in industrial parks under valley landforms in Tibetan Plateau: Spatial pattern, ecological risk and interaction with soil microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134411. [PMID: 38677117 DOI: 10.1016/j.jhazmat.2024.134411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/13/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
The spatial patterns of pollutants produced by industrial parks are affected by many factors, but the interactions among polycyclic aromatic hydrocarbons (PAHs), metals, and soil microorganisms in the valley landforms of the Tibetan Plateau are poorly understood. Thus, this study systematically investigated the distribution and pollution of metals and PAHs in soil around an industrial park in the typical valley landform of the Tibetan Plateau and analyzed and clarified the interaction among metals, PAHs, and microorganisms. The results were as follows: metal and PAH concentrations were affected by wind direction, especially WN-ES and S-N winds; Cd (2.86-54.64 mg·kg-1) had the highest soil concentrations of the metals screened, followed by variable concentrations of Cu, Pb, and Zn; the pollution levels of metals and PAHs in the S-N wind direction were lower than those in the WN-ES wind direction; the Cd content of Avena sativa in the agricultural soil around the factory exceeded its enrichment ability and food safety standards; the closer to the center of the park, the higher the ecological risk of PAHs; and the TEQ and MEQ values of the PAHs were consistent with their concentration distributions. The results of the soil microbial diversity and co-occurrence network in the dominant wind direction showed that metal and PAH pollution weakened the robustness of soil microbial communities. Additionally, the diversity and robustness of soil microbial communities at the S wind site were higher than those at the ES wind site, which might be attributed to the lower metal content of the former than the latter, which plays a negative role in the biodegradation of PAHs. The results of this study provide insights into the site selection, pollutant supervision, and environmental remediation of industrial parks in typical landforms.
Collapse
Affiliation(s)
- Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Du
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Huajun Fang
- Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Luo Y, Pang J, Pan S, Wang J, Jiang X, Xu Q, Zhang H, Ruan C, Ren J, Zhang C, Shi J. Penicillium oxalicum SL2-enhanced nanoscale zero-valent iron effectively reduces Cr(VI) and shifts soil microbiota. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134058. [PMID: 38508106 DOI: 10.1016/j.jhazmat.2024.134058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Most current researches focus solely on reducing soil chromium availability. It is difficult to reduce soil Cr(VI) concentration below 5.0 mg kg-1 using single remediation technology. This study introduced a sustainable soil Cr(VI) reduction and stabilization system, Penicillium oxalicum SL2-nanoscale zero-valent iron (nZVI), and investigated its effect on Cr(VI) reduction efficiency and microbial ecology. Results showed that P. oxalicum SL2-nZVI effectively reduced soil total Cr(VI) concentration from 187.1 to 3.4 mg kg-1 within 180 d, and remained relatively stable at 360 d. The growth curve of P. oxalicum SL2 and microbial community results indicated that γ-ray irradiation shortened the adaptation time of P. oxalicum SL2 and facilitated its colonization in soil. P. oxalicum SL2 colonization activated nZVI and its derivatives, and increased soil iron bioavailability. After restoration, the negative effect of Cr(VI) on soil microorganisms was markedly alleviated. Cr(VI), Fe(II), bioavailable Cr/Fe, Eh, EC and urease (SUE) were the key environmental factors of soil microbiota. Notably, Penicillium significantly stimulated the growth of urease-positive bacteria, Arthrobacter, Pseudarthrobacter, and Microvirga, synergistically reducing soil chromium availability. The combination of P. oxalicum SL2 and nZVI is expected to form a green, economical and long-lasting Cr(VI) reduction stabilization strategy.
Collapse
Affiliation(s)
- Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Soil Contamination Bioremediation, College of Environment and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jingli Pang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyi Pan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiao Xu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 China
| | - Haonan Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chendao Ruan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chun Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Wu Z, Cai P, Liang E, Chen Q, Sun W, Wang J. Distinct adaptive strategies and microbial interactions of soil viruses under different metal(loid) contaminations. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132347. [PMID: 37619274 DOI: 10.1016/j.jhazmat.2023.132347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Viruses, as the most abundant organisms, significantly influence ecological function and microbial survival in soils, yet little was known about how viruses and virus-microbe interactions respond to environmental stresses induced by metal(loid) contaminations. Here, we conducted the metagenomic analysis to investigate the adaptative mechanisms of soil viruses under different metal(loid) contamination levels. By capturing a catalogue of 23,066 viruses, we found that viral communities exhibited the increased richness, diversity, and the temperate to lytic ratio in facing the highest metal(loid) contaminations. Meanwhile, viruses displayed obvious lineage-specific infection modes to distinct dominant hosts under different pollution levels. Viral functions linking to the inhibition of transcription and the enhancement of DNA repairment as well as multiple resistance not only contributed to coping with elevated multiple metal(loid) stresses, but also facilitated the adaptation and functioning of viral hosts. Moreover, the harmonious coexistence of viruses and resistant/pathogenic bacteria under the heaviest contaminations potentially exacerbated disseminating resistance and pathogenicity, while viruses under the lightest contaminations might be natural predators of resistant/pathogenic bacteria through lysing host cells. Overall, this study highlights the ecological importance of viral adaptation and the interactions between viruses and resistant/pathogenic bacteria in contaminated environments, contributing to developing virus-based approaches to soil restoration.
Collapse
Affiliation(s)
- Zongzhi Wu
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China; School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Pinggui Cai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Jiawen Wang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China; School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
7
|
Cai P, Chen Q, Du W, Yang S, Li J, Cai H, Zhao X, Sun W, Xu N, Wang J. Deciphering the dynamics of metal and antibiotic resistome profiles under different metal(loid) contamination levels. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131567. [PMID: 37167868 DOI: 10.1016/j.jhazmat.2023.131567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Metal(loid) contaminations pose considerable threats to ecological security and public health, yet little is known about the dynamics of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) under different metal(loid) contamination levels. Here, we provided a systematic investigation of MRGs and ARGs in three zones (Zones I, II, and III) with different metal(loid) contamination levels across an abandoned sewage reservoir. More diverse MRGs and ARGs were detected from the high-contaminated Zone I and the moderate-contaminated Zone II, while the abundant MGEs (mobile genetic elements) potentially enhanced the horizontal gene transfer potential and the resistome diversity in Zone I. Particularly, resistome hosts represented by Thiobacillus, Ramlibacter, and Dyella were prevalent in Zone II, promoting the vertical gene transfer of MRGs and ARGs. The highest health risk of ARGs was predicted for Zone I (about 7.58% and 0.48% of ARGs classified into Rank I and Rank II, respectively), followed by Zone II (2.11% and 0%) and Zone III (0% and 0%). However, the ARGs co-occurring with MRGs might exhibit low proportions and low health risks (all were Rank IV) in the three zones. Overall, these findings uncovered the dynamic responses of resistomes and their hosts to different metal(loid) contamination levels, contributing to formulating accurate management and bioremediation countermeasures for various metal(loid) contaminated environments.
Collapse
Affiliation(s)
- Pinggui Cai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Wenran Du
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Shanqing Yang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Jiarui Li
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Xiaohui Zhao
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; School of Water Resources and Hydropower Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Nan Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Jiawen Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China.
| |
Collapse
|