1
|
Inalegwu Okopi S, Zeng J, Fan X, Lu J, Cui J, Hu Y, Wang J, Chen J, Sangué Djandja O, Ma Y, Che L, Zhaolin G, Xu F. Environmental sustainability assessment of a new food waste anaerobic digestion and pyrolysis hybridization system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 179:130-143. [PMID: 38471251 DOI: 10.1016/j.wasman.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 03/14/2024]
Abstract
This research conducted an environmental life cycle assessment (LCA) to evaluate an anaerobic digestion-co-pyrolysis (ADCo-Py) system in which pyrolysis was added to traditional food waste (FW) anaerobic digestion (AD) systems to treat the solid fraction and impurities separated from FW. The solid fraction, including impurities such as wooden chopsticks, plastics, eggshells, and bones, is usually incinerated, while pyrolysis can be a viable alternative to optimize FW treatment. The environmental impact of ADCo-Py was compared with stand-alone AD, pyrolysis, and ADCo-INC (AD with incineration of separated solids). The results indicated that both ADCo-Py (-1.726 kg CO2-Eq/kgFW) and ADCo-INC (-1.535 kg CO2-Eq/kgFW) outperform stand-alone AD (-0.855 kg CO2-Eq/kgFW) and pyrolysis (-0.181 kg CO2-Eq/kgFW) in mitigating global warming potential (GWP). Additionally, pretreatments were found to have the most significant influence on GWP, ecotoxicity potential (ETP), and acidification potential (AP). The two-step pretreatment in ADCo-Py, including the separation of solids and drying, significantly improved the environmental sustainability of the system when compared with standalone pyrolysis.
Collapse
Affiliation(s)
- Solomon Inalegwu Okopi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianfei Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuetong Fan
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiaxin Lu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Jiahao Cui
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yang Hu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiayu Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiaxin Chen
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Oraléou Sangué Djandja
- Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Yingqun Ma
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Che
- College of Engineering, Huzhou Normal University, No. 759, East 2nd Road, Huzhou 313000, China
| | - Gu Zhaolin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fuqing Xu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Begum YA, Kumari S, Jain SK, Garg MC. A review on waste biomass-to-energy: integrated thermochemical and biochemical conversion for resource recovery. ENVIRONMENTAL SCIENCE: ADVANCES 2024; 3:1197-1216. [DOI: 10.1039/d4va00109e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Integrating thermochemical–biochemical methods overcomes the single-path limits for bioenergy production. This synergy lowers costs and enhances energy sustainability, highlighting waste-to-energy's vital role in the circular economy transition.
Collapse
Affiliation(s)
- Yasmin Ara Begum
- Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh 201313, India
| | - Sheetal Kumari
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh 201313, India
| | - Shailendra Kumar Jain
- Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh 201313, India
| | - Manoj Chandra Garg
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh 201313, India
| |
Collapse
|
3
|
Arcas-Pilz V, Gabarrell X, Orsini F, Villalba G. Literature review on the potential of urban waste for the fertilization of urban agriculture: A closer look at the metropolitan area of Barcelona. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167193. [PMID: 37741375 DOI: 10.1016/j.scitotenv.2023.167193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/20/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
Urban agriculture (UA) activities are increasing in popularity and importance due to greater food demands and reductions in agricultural land, also advocating for greater local food supply and security as well as the social and community cohesion perspective. This activity also has the potential to enhance the circularity of urban flows, repurposing nutrients from waste sources, increasing their self-sufficiency, reducing nutrient loss into the environment, and avoiding environmental cost of nutrient extraction and synthetization. The present work is aimed at defining recovery technologies outlined in the literature to obtain relevant nutrients such as N and P from waste sources in urban areas. Through literature research tools, the waste sources were defined, differentiating two main groups: (1) food, organic, biowaste and (2) wastewater. Up to 7 recovery strategies were identified for food, organic, and biowaste sources, while 11 strategies were defined for wastewater, mainly focusing on the recovery of N and P, which are applicable in UA in different forms. The potential of the recovered nutrients to cover existing and prospective UA sites was further assessed for the metropolitan area of Barcelona. Nutrient recovery from current composting and anaerobic digestion of urban sourced organic matter obtained each year in the area as well as the composting of wastewater sludge, struvite precipitation and ion exchange in wastewater effluent generated yearly in existing WWTPs were assessed. The results show that the requirements for the current and prospective UA in the area can be met 2.7 to 380.2 times for P and 1.7 to 117.5 times for N depending on the recovery strategy. While the present results are promising, current perceptions, legislation and the implementation and production costs compared to existing markets do not facilitate the application of nutrient recovery strategies, although a change is expected in the near future.
Collapse
Affiliation(s)
- Verónica Arcas-Pilz
- Sostenipra Research Group (2021 SGR 00734), Institut de Ciència i Tecnologia Ambientals ICTA-UAB (CEX2019-0940-M), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Xavier Gabarrell
- Sostenipra Research Group (2021 SGR 00734), Institut de Ciència i Tecnologia Ambientals ICTA-UAB (CEX2019-0940-M), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Francesco Orsini
- DISTAL-Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy
| | - Gara Villalba
- Sostenipra Research Group (2021 SGR 00734), Institut de Ciència i Tecnologia Ambientals ICTA-UAB (CEX2019-0940-M), Z Building, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Wu S, Wang Q, Fang M, Wu D, Cui D, Pan S, Bai J, Xu F, Wang Z. Hydrothermal carbonization of food waste for sustainable biofuel production: Advancements, challenges, and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165327. [PMID: 37419347 DOI: 10.1016/j.scitotenv.2023.165327] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
With the improvement of living standards, food waste (FW) has become one of the most important organic solid wastes worldwide. Owing to the high moisture content of FW, hydrothermal carbonization (HTC) technology that can directly utilize the moisture in FW as the reaction medium, is widely used. Under mild reaction conditions and short treatment cycle, this technology can effectively and stably convert high-moisture FW into environmentally friendly hydrochar fuel. In view of the importance of this topic, this study comprehensively reviews the research progress of HTC of FW for biofuel synthesis, and critically summarizes the process parameters, carbonization mechanism, and clean applications. Physicochemical properties and micromorphological evolution of hydrochar, hydrothermal chemical reactions of each model component, and potential risks of hydrochar as a fuel are highlighted. Furthermore, carbonization mechanism of the HTC treatment process of FW and the granulation mechanism of hydrochar are systematically reviewed. Finally, potential risks and knowledge gaps in the synthesis of hydrochar from FW are presented and new coupling technologies are pointed out, highlighting the challenges and prospects of this study.
Collapse
Affiliation(s)
- Shuang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Qing Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China.
| | - Minghui Fang
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Dongyang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Da Cui
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Shuo Pan
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Jingru Bai
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Faxing Xu
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, Jilin, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, Jilin, PR China
| | - Zhenye Wang
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, Jilin, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, Jilin, PR China
| |
Collapse
|