1
|
Zhang T, Xu Z, Xu Z, Ma Y, Niu Z, Chen J, Zhang M, Shi F. Progress on layered double hydroxides as green materials in sustainable agricultural production. ENVIRONMENTAL RESEARCH 2025; 271:121031. [PMID: 39922260 DOI: 10.1016/j.envres.2025.121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
As the global population continues to grow, there is increasing demand for high-quality and high-yield food. However, traditional agrochemicals such as fertilizers and pesticides suffer from low utilization rates and can be hazardous to non-target organisms and the soil environment. Two-dimensional layered double hydroxides (LDHs) have attracted considerable attention in the agricultural sector owing to their excellent properties. To alleviate the general concern about the use of LDH materials in combination with agrochemicals, this paper presents a comprehensive overview of the structure, properties, preparation methods, and cytotoxicity of LDHs, with a focus on the advantages and disadvantages of different synthesis methods. In addition, the current research status of the application of LDHs as green materials in modern agricultural production is presented, and the applications of nano fertilizers for promoting crop growth, nano pesticides for efficient herbicide and insecticide, efficient adsorption of pollutants and soil heavy metal ions to maintain soil stability, and applications in genetic modification and enhancement of plant photosynthesis are discussed in detail. Finally, future research directions for LDH are envisioned. We hope that this study will promote the use of LDH materials in agricultural practices.
Collapse
Affiliation(s)
- Tongtong Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhenghong Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhihua Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Yu Ma
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhihan Niu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiaqi Chen
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Min Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Feng Shi
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
2
|
Nickabadi S, Golmohammadi B, Hadavi M. Enhanced organic matter removal and fouling mitigation in seawater desalination using electrocoagulation pretreatment using ZnO coated Fe electrodes. Sci Rep 2025; 15:8256. [PMID: 40065074 PMCID: PMC11894051 DOI: 10.1038/s41598-025-93220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
This study introduces a novel application of electrocoagulation (EC) as a pretreatment method for seawater desalination, uniquely focusing on reducing organic and biological fouling in reverse osmosis membranes. The EC process was investigated as an alternative to conventional approaches such as chemical coagulation, chlorination, and fouling inhibitors. EC was conducted in a batch cell using iron electrodes. The effectiveness of the EC process in removing organic matter from water was monitored by measuring absorbance UV254 and dissolved organic carbon (DOC), as well as total hardness. Various operational parameters, including mixing speed, current density, initial pH, and electrode spacing, were examined. Results demonstrated that increasing current density and decreasing pH enhanced the removal of organic matter from seawater via EC. The process achieved a 62% reduction in DOC and a 59.7% reduction in absorbance, indicating that higher current density is more favorable for these reactions. However, the reduction in total hardness was relatively low at approximately 11.2%, suggesting that EC is not suitable for reducing water hardness. Overall, the experimental findings highlight the high potential of electrocoagulation as a pretreatment method for mitigating organic and biological fouling of reverse osmosis membranes due to its effectiveness in removing dissolved organic matter and microorganisms from seawater.
Collapse
Affiliation(s)
- Saeid Nickabadi
- Faculty of Mechanical Engineering, University of Imam Khomeini Marine Sciences, Nowshahr, Iran.
| | - Behrang Golmohammadi
- Department of Physical Chemistry, Faculty Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mohammadreza Hadavi
- Faculty of Mechanical Engineering, University of Imam Khomeini Marine Sciences, Nowshahr, Iran
| |
Collapse
|
3
|
Arain MB, Soylak M. Synthesis of magnetic multi-walled carbon nanotubes with layered double hydroxide (M-MWCNTs@MnAl-LDH) nanocomposite as an adsorbent for lead extraction. Food Chem 2025; 463:141311. [PMID: 39332356 DOI: 10.1016/j.foodchem.2024.141311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
MnAl layered double hydroxide hybrid with magnetic-multiwalled carbon nanotubes was synthesized by a hydrothermal method and used for the extraction of Pb(II) (lead) from spices and water samples in the dispersive solid phase microextraction (dSPμE) technique using FAAS. The as-prepared adsorbent MMWCNTs@MnAl-LDH was characterized by XRD, FTIR, EDX, and SEM techniques. Various analytical parameters were optimized, including pH 8, adsorbent dosage of 5 mg, HNO3 eluent concentration of 1 mol L-1, eluent volume of 3 mL, eluent time of 60 s, and sample volume of 20 mL, for quantitative lead recoveries, with an LOD of 0.314 μg L-1, an LOQ of 1.048 μg L-1, and PF of 11.53. Under the optimized conditions, the linearity ranges from 0.5 to 500 μg L-1 (R2 = 0.9997). For the validation test of the established dSPμE procedure, Certified reference materials (CRMs) were used, yielding satisfactory recovery results ranging from 97.8 to 102.7 %. The method was applied to determine lead in turmeric, tap water, and industrial water samples.
Collapse
Affiliation(s)
- Muhammad Balal Arain
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye; Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan.
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Türkiye; Turkish Academy of Sciences (TUBA), Çankaya, Ankara, Türkiye.
| |
Collapse
|
4
|
Zhang N, Zhang B, Wang C, Sui H, Zhang N, Wen Z, He A, Zhang R, Xue R. Magnetic CoFe hydrotalcite composite Co metal-organic framework material efficiently activating peroxymonosulfate to degrade sulfamethoxazole: Oxygen vacancy-mediated radical and non-radical pathways. J Colloid Interface Sci 2024; 671:110-123. [PMID: 38795532 DOI: 10.1016/j.jcis.2024.05.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Herein, a novel rich oxygen vacancy (Ov) cobalt-iron hydrotalcite composite cobalt metal-organic framework material (ZIF-67/CoFe-LDH) was prepared by simple urea water and heat reduction approach and utilized for the peroxymonosulfate (PMS) system to remove sulfamethoxazole (SMX). 95 ± 1.32 % SMX (20 mg/L) was able to degraded in 20 min with TOC removal of 53 ± 1.56 % in ZIF-67/CoFe-LDH/PMS system. The system maintained a fantastic catalytic capability with wide pH range (3-9) and common interfering substances (Cl-, NO3-, CO32-, PO42- and humic acid (HA)), and the degradation efficiency could even remain 80.2 ± 1.48 % at the fifth cycle. Meanwhile, the applicability and feasibility of the catalysts for practical water treatment was verified by the degradation effects of SMX in different water environments and several other typical pollutants. Co and Fe bimetallic active centers synergistically activate PMS, and density functional theory (DFT) predicted adsorption energy about Ov in ZIF-67/CoFe-LDH for PMS was 1.335 eV, and OO bond length of PMS was stretched to 1.826 Å. As a result, PMS was more easily activated and broken, which accelerated the singlet oxygen (1O2), sulfate radical (SO4•-), high-valent metals and other reactive oxygen species (ROS). Radical and non-radical jointly degrading the pollutants improved the catalytic effect. Finally, SMX degradation intermediates were analyzed to explain the degradation pathway and their biotoxicity was also evaluated. This paper provides a new research perspective of oxygen vacancy activating PMS to degrade pollutants.
Collapse
Affiliation(s)
- Nianbo Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Baoyong Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chen Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Huiying Sui
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Na Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Zunqing Wen
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Ao He
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Ruiyan Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China
| | - Rong Xue
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), 3501 University Road, Jinan 250353, China.
| |
Collapse
|
5
|
Ara M, Ghafuri H. Design and preparation of a novel Mg-Al LDH@EDTA-Melamine nanocomposite for effective adsorptive removal of methylene blue and rhodamine B dyes from water. Heliyon 2024; 10:e32447. [PMID: 38994068 PMCID: PMC11237852 DOI: 10.1016/j.heliyon.2024.e32447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
This paper deals with the preparation of a novel nanocomposite consisted of magnesium-aluminum layered double hydroxide (Mg-Al LDH) and ethylenediaminetetraacetic acid (EDTA) as well as melamine (MA) as an adsorbent. This nanocomposite was utilized to adsorb different dyes such as rhodamine B (RhB) and methylene blue (MB) from water. The prepared adsorbent was characterized using FT-IR, EDS, XRD, TGA, and FE-SEM analyses. The effects of various parameters such as concentration, time, adsorbent dosage, temperature, and pH were tested to investigate their influence on adsorption conditions. Both methylene blue and rhodamine B dyes showed pseudo-second-order adsorption kinetics, and their adsorption followed the Langmuir isotherm. Moreover, the maximum adsorption capacities for methylene blue and rhodamine B were found to be 1111.103 mg/g at 45 °C and 232.558 mg/g at 60 °C, respectively. Additionally, the adsorption processes were found to be spontaneous (ΔG°< 0, for both dyes) and exothermic (ΔH° = -12.42 kJ/mol for methylene blue and ΔH° = -25.84 kJ/mol for rhodamine B) for both dyes. Hydrogen bonding and electrostatic forces are responsible for the interactions occur between the nanocomposite and the functional groups in the dyes. The experimental findings demonstrated a greater adsorption rate of MB than RhB, suggesting the adsorbent's stronger affinity for MB. This preference is likely due to MB's size, specific functional groups, and smaller molecule size, enabling stronger interactions and more efficient access to adsorption sites compared to RhB. Even after recycling 4 times, the dye adsorption percentages of the adsorbent for MB and RhB dyes were 90 % and 87 %, but the desorption percentages of the adsorbate dyes were 85 % and 80 %, respectively. The prepared adsorbent boasts several unique properties, such as the swift and effortless adsorption of MB and RhB dyes, straightforward synthesis, mild adsorption conditions, remarkable efficiency, and the ability to be recycled up to 4 times without a significant decrease in activity.
Collapse
Affiliation(s)
- Mohammad Ara
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
6
|
Zhang X, Zhang K, Shi Y, Xiang H, Yang W, Zhao F. Surface engineering of multifunctional nanostructured adsorbents for enhanced wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170951. [PMID: 38367722 DOI: 10.1016/j.scitotenv.2024.170951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Rapid urbanization and industrialization have significantly contributed to the contamination of the environment through the discharge of wastewater containing various pollutants. The development of high-performance surface functional nanostructured adsorbents is of wide interest for researchers. Therefore, we explore the significant advancements in this field, focusing on the efficiency of nanostructured materials, as well as their nanocomposites, for wastewater treatment applications. The crucial role of surface modification in enhancing the affinity of these nanostructured adsorbents towards targeted pollutants, addressing a key bottleneck in the utilization of nanomaterials for wastewater treatment, was specifically emphasized. In addition to highlighting the advantages of surface engineering in enhancing the efficiency of nanostructured adsorbents, this review also provides a comprehensive overview of the limitations and challenges associated with surface-modified nanostructured adsorbents, including high cost, low stability, poor scalability, and potential nanotoxicity. Addressing these limitations is essential for realizing the commercial viability of these state-of-the-art materials for large-scale wastewater treatment applications. This review also thoroughly discusses the potential scalability and environmental safety aspects of surface-modified nanostructured adsorbents, offering insights into their future prospects for wastewater treatment. It is believed that this review will contribute significantly to the existing body of knowledge in the field and provide valuable information for researchers and practitioners working in the area of environmental remediation and nanomaterials.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Kejing Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yan Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| | - Hongrui Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China.
| |
Collapse
|
7
|
Iqbal N, Mu G, Dong M, Yang Y, Huang Y, Yuan H, Liu X, Batool I, Carlini R. Hydrolytic degradation of methoxychlor by immobilized cellulase on LDHs@Fe 3O 4 nanocomposites. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:170-186. [PMID: 38214993 PMCID: wst_2023_399 DOI: 10.2166/wst.2023.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
In this study, we synthesized Fe3O4 using the co-precipitation method and then prepared magnetic carrier LDHs@Fe3O4 by immobilizing layered double hydroxide on Fe3O4 by in situ growth method. Cellulase was immobilized on this magnetic carrier by using glutaraldehyde as a coupling agent, which can be used for degrading Methoxychlor (MXC). The results demonstrated the maximum MXC removal efficiency of 73.4% at 45 °C and pH = 6.0 with excellent reusability. Through kinetic analysis, it was found that the degradation reaction conforms to the Langmuir-Hinshelwood model and is a first-order reaction. Finally, according to the EPR analysis, the active radicals in the system were found to be OH· and the degradation mechanism was proposed in combination with LC-MS. This study provides a feasible method for degrading organochlorine pesticides, which can be used for groundwater purification.
Collapse
Affiliation(s)
- Nazar Iqbal
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Nazar lqbal and Guangda Mu contributed equally to this work E-mail:
| | - Guangda Mu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Nazar lqbal and Guangda Mu contributed equally to this work
| | - Mengyang Dong
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxiang Yang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Huang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongming Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Xiangnong Liu
- Analysis Test Center, Yangzhou University, Yangzhou 225009, China
| | - Irum Batool
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Riccardo Carlini
- Chemistry and Material Chemistry Department, LAS Klee-Barabino, 16146 Genova, Italy
| |
Collapse
|
8
|
Sun M, Wang XZ, Xiong RY, Chen X, Zhai LF, Wang S. High-performance biochar-loaded MgAl-layered double oxide adsorbents derived from sewage sludge towards nanoplastics removal: Mechanism elucidation and QSAR modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165971. [PMID: 37532050 DOI: 10.1016/j.scitotenv.2023.165971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Utilization of sewage sludge for the fabrication of environmental functional materials is highly desirable to achieve pollution mitigation and resource recovery. In the present work, we introduced a novel MgAl-layered double oxide (LDO)@biochar composite adsorbent in-situ fabricated from Al-rich sewage sludge, and its excellent application in nanoplastics adsorption. Initially, fifteen model contaminants with varied conjugate structures, hydrogen bonding and ionic properties were selected for an investigation of adsorption behavior and adsorption selectivity on LDO@biochar. Structural variation of LDO@biochar suggested reconstruction of the layered double hydroxide (LDH) during the adsorption process due to the "memory effect". Under the synergy of LDH and biochar, the contaminants were adsorbed via multiple adsorbent-adsorbate interactions, including anion exchange, electrostatic interaction, hydrogen bonding and π-π conjugation. Then, a quantitative structure-activity relationship (QSAR) model was constructed by integrating the number of hydrogen bond acceptors, polarity surface area, number of aromatic rings, and Fukui index f(-)x together to reflect the affinity of each contaminant to the adsorbent. Guided by the QSAR model, the negatively charged polystyrene nanoplastics with continuously conjugated aromatic rings were predicted to be effectively adsorbed on LDO@biochar. Experimental tests confirmed a great capacity of LDO@biochar towards the polystyrene nanoplastics, given the equilibrium adsorption capacity as high as 360 mg g-1 at 30-50 °C. This work not only opened up a new avenue for sustainable utilization of sewage sludge towards high-performance environmental functional materials, but also demonstrated the potential of the QSAR analysis as a rapid and accurate approach for guiding the application of an adsorbent to new emerging containments.
Collapse
Affiliation(s)
- Min Sun
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xian-Zhang Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ren-Ying Xiong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiangying Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lin-Feng Zhai
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Shaobin Wang
- School of Chemical Engineering, the University of Adelaide, Adelaide SA5005, Australia.
| |
Collapse
|
9
|
Waheed A, Sajid M, Asif M. Green synthesis of a mesoporous hyper-cross-linked polyamide/polyamine 3D network through Michael addition for the treatment of heavy metals and organic dyes contaminated wastewater. CHEMOSPHERE 2023; 340:139805. [PMID: 37586500 DOI: 10.1016/j.chemosphere.2023.139805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Environmental pollution is the greatest challenge of the modern age due to unprecedented industrialization and urbanization that has led to the contamination of water resources with a wide range of pollutants. The release of untreated industrial and municipal wastewater to water bodies further intensifies the problem. The presence of heavy metals and organic contaminants in water poses significant threats to humans, aquatic life, and the environment. Adsorption is one of the famous water treatment technologies due to its simplicity, low cost, efficiency, and minimal secondary pollution. The selection or synthesis of an effective adsorbent is key to the success of the adsorptive removal of pollutants. In this work, we synthesized an adsorbent consisting of a mesoporous hyper-cross-linked polyamide/polyamine 3D network through a single-step Michael addition reaction. The adsorbent was characterized by FTIR, PXRD, TGA, SEM, and TEM to investigate its functional moieties, material nature, thermal, morphological, and internal structural features, respectively. Due to its mesoporous structure, presence of functional groups, and 3D hyper-cross-linked network, it efficiently removed heavy metals (Cd, Cr, and Pb) from aqueous media. The effect of various parameters such as sample pH, adsorbent dosage, contact time, and adsorbate concentrations was thoroughly investigated. The experimental data were analyzed by a variety of isotherm models wherein Langmuir was found to be the best fit for explaining the adsorption of all the metals. The adsorption kinetics was best explained by the pseudo-second-order model. The maximum adsorption capacities for Cd, Cr, and Pb were 60.98 mg g-1, 119 mg g-1, and 9.302 mg g-1, respectively. The synthesized adsorbent was also tested for removal of organic dyes, and it showed selective and fast removal of Eriochrome Black T. Polymeric resins can be promising materials for adsorptive remediation of pollutants in aqueous media.
Collapse
Affiliation(s)
- Abdul Waheed
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Mohammad Asif
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|