1
|
Guo M, Cheng Z, Zhang S, Wang P, Feng H, Zhang T, Zhu H, Sun H, Wang L. Gestation Exposure to Organophosphate Esters: Structure-Dependent Transplacental Transfer Patterns, Mechanisms, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:10867-10878. [PMID: 40420574 DOI: 10.1021/acs.est.5c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Organophosphate esters (OPEs), characterized by diverse chemical substituents, exhibit varying environmental exposure and toxicity profiles. Therefore, OPEs may have potential for placental transfer and could impact neonatal development. However, the structural-specific transplacental mechanisms and toxicity effects of the OPEs remain poorly understood. Herein, we develop an integrated evaluation system with human biomonitoring, uterine perfusion in pregnant rats, and placental cells. OPEs were frequently observed in maternal and cord whole blood, urine, and amniotic fluid samples (n = 41 sample sets) with median concentrations of 9.47, 9.31, 9.90, and 5.98 ng/mL, respectively. Rat uterine perfusion experiment suggested that chlor-OPEs exhibited relatively higher transplacental efficiency compared to alkyl- and aryl-OPEs. Passive diffusion dominated by lipophilicity (log Kow) and transporters dominated active transport may be involved in the transplacental transportation mechanisms. The results from exposure experiments to placenta BeWo cells indicated that organophosphate triesters (tri-OPEs) (IC50 values of 145 to 1464 μM) exhibited higher toxicity to the corresponding organophosphate diesters (di-OPEs) (IC50 values of 752 to 1794 μM). In addition, chlor-OPEs represented significantly greater cytotoxic potential to placenta cells in comparison to alkyl and aryl-OPEs. More attention should be paid for chlor-OPEs as its higher transplacental and toxicity potential compared to alkyl- and aryl-OPEs.
Collapse
Affiliation(s)
- Meiqi Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Pingping Wang
- National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huan Feng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Gravel S, Traore IT, Diamond ML, Jantunen L, Zayed J, Labrèche F, Verner MA. Do urinary metabolites reflect occupational exposure to organophosphate flame retardants? A case study in electronic waste recycling workers. Toxicol Lett 2025; 408:23-31. [PMID: 40185212 DOI: 10.1016/j.toxlet.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 12/13/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Organophosphate esters (OPEs) are commonly used in electronic devices to meet safety standards, but electronic-waste recycling (e-recycling) workers may face significant exposure to those potentially hazardous compounds in their workplace. We examined the relationship between urinary OPE metabolites and their parent compounds in the air, in Canadian e-recycling facilities. We collected personal air samples and end-of-shift urine samples from workers at six e-recycling facilities. We employed linear and Tobit regression models to assess associations between air concentrations of triphenyl phosphate (TPhP) and three metabolites, of tris (2-chloroethyl) phosphate (TCEP) and two metabolites, of tris (2-chloroisopropyl) phosphate (TCPP) and two metabolites, of tris (1,3-dichloro-2-propyl) phosphate (TDCPP), and of tris (2-butoxyethyl) phosphate (TBOEP) and one metabolite each. The 85 participants, mostly male (78 %) and aged between 25 and 54, had concentrations of OPEs detected in 90-100 % of air samples, with geometric means of TPhP, TCEP, TBOEP and TDCPP, of 351, 404, 261 and 250 picomoles per cubic metre respectively. The proportion of detection of their corresponding metabolites varied between 32 % and 98 %. Regression models including the urinary flow rate as a covariate showed that a doubling of the air concentration of TCEP was associated with a 42-107 % increase in its metabolites, and a doubling of air concentration of TBOEP, with a 77 % increase. The paucity of data on the toxicokinetics of OPEs limits the determination of appropriate urinary metabolites to monitor OPE occupational exposure. Such additional data, in combination with workplace contextual information, may help clarify the major routes of exposure and the corresponding contributing sources.
Collapse
Affiliation(s)
- Sabrina Gravel
- Institut Robert-Sauvé en santé et en sécurité du travail, Montreal, Quebec H3A 3C2, Canada; Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Quebec H3T 1A8, Canada; Centre de recherche en santé publique (CReSP), Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Quebec H3N 1X9, Canada.
| | - Inna Tata Traore
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Quebec H3T 1A8, Canada
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, Toronto, Ontario M5S 3B1, Canada; School of the Environment, University of Toronto, Toronto, Ontario M5S 3B8, Canada
| | - Liisa Jantunen
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3B8, Canada; Air Quality Processes Research Section, Environment and Climate Change Canada, Egbert, Ontario L0L 1N0, Canada
| | - Joseph Zayed
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Quebec H3T 1A8, Canada; Centre de recherche en santé publique (CReSP), Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Quebec H3N 1X9, Canada
| | - France Labrèche
- Institut Robert-Sauvé en santé et en sécurité du travail, Montreal, Quebec H3A 3C2, Canada; Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Quebec H3T 1A8, Canada; Centre de recherche en santé publique (CReSP), Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Quebec H3N 1X9, Canada
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Quebec H3T 1A8, Canada; Centre de recherche en santé publique (CReSP), Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Quebec H3N 1X9, Canada
| |
Collapse
|
3
|
Lapehn S, Parenti M, Firsick EJ, Khodasevich D, Baker BH, Day DB, MacDonald JW, Bammler TK, Kannan K, Choi HY, Barrett ES, Howe CG, Carroll KN, LeWinn KZ, Zhao Q, Cardenas A, Szpiro AA, Sathyanarayana S, Paquette AG. An assessment of organophosphate ester mixtures and the placental transcriptome. ENVIRONMENT INTERNATIONAL 2025; 198:109402. [PMID: 40132437 DOI: 10.1016/j.envint.2025.109402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Prenatal exposure to organophosphate ester (OPE) chemicals, commonly used as flame retardants and plasticizers, has been associated with adverse birth outcomes. The placenta is a critical fetal organ and therefore may be involved in pathogenesis of birth outcomes. The goal of this study was to evaluate associations of 10 maternal urinary OPE metabolites, individually and as a mixture, with the placental transcriptome at birth in the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) study. Individual OPE metabolites were evaluated for associations with individual genes as well as co-expressed gene modules. Mixtures analysis was conducted using quantile g-computation. The analyses were performed with the entire data set (N = 737) as well as the sex-stratified subsets. Two genes (HAP1 and RAP1GAP) were associated with bis(1,3-dichloro-2-propyl) phosphate (BDCPP), and six genes were associated the mixture in the full data set. 3 genes were associated with diphenyl phosphate (DPHP) and 36 genes were associated with the mixture in a male stratified analysis. 2 genes were associated with DPHP, and 1 gene was associated with diethyl phosphate (DEP) in a female stratified analysis. Three gene modules were associated with BDCPP or diphenyl phosphate (DPHP) and one module was associated with the OPE mixture. 12 WGCNA modules were associated with individual OPE metabolites or the mixture in males, and 1 WGCNA module was associated with DEP in females. Five of the OPE-associated gene modules were enriched for a total of 17 KEGG pathways, and 11 modules were enriched with targets of 12 nuclear hormone receptor transcription factors. Overall, novel associations were identified between the placental transcriptome and OPE metabolites, individually and in mixture, including differences based on fetal sex. These findings highlight the need for additional research on mechanisms of OPE-associated gene expression changes in the placenta and associated health outcomes.
Collapse
Affiliation(s)
- Samantha Lapehn
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, United States
| | - Mariana Parenti
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, United States
| | - Evan J Firsick
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, United States
| | - Dennis Khodasevich
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, United States
| | - Brennan H Baker
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA 98101 United States; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 United States
| | - Drew B Day
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA 98101 United States
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 United States
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 United States
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States
| | - Hyo Young Choi
- Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, NJ 08854, United States
| | - Caitlin G Howe
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Hanover, NH 03755, United States
| | - Kecia N Carroll
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California-San Francisco School of Medicine, San Francisco, CA 94107, United States
| | - Qi Zhao
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA 98195, United States
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, United States
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA 98195, United States
| | - Sheela Sathyanarayana
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA 98101 United States; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 United States; Department of Pediatrics, University of Washington, Seattle, WA 98195, United States
| | - Alison G Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, United States; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 United States; Department of Pediatrics, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
4
|
Nero E, Caron-Beaudoin É, Aker A, Gaudreau É, Ayotte P, Blanchette C, Lemire M. Exposure to organophosphate esters among Inuit adults of Nunavik, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173563. [PMID: 38810742 DOI: 10.1016/j.scitotenv.2024.173563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Halogenated organophosphate esters (OPEs) are increasingly used as flame retardants to replace polybrominated diphenyl ethers (PBDEs), which have been phased out due to their confirmed persistence, toxicity, and ability to undergo long range atmospheric transport. Non-halogenated OPEs are primarily used as plasticizers. While human exposure to PBDEs in the Canadian Arctic is well documented, it is not the case for OPEs. To assess the exposure to OPEs in Inuit living in Nunavik (northern Québec, Canada), we measured 16 metabolites of halogenated and non-halogenated OPEs in pooled urine samples from the last population health survey conducted in Nunavik, the Qanuilirpitaa? 2017 Inuit Health Survey (Q2017). Urine samples (n = 1266) were pooled into 30 pools by sex (female; male), age groups (16-19; 20-29; 30-39; 40-59; 60+ years old) and regions (Hudson Bay; Hudson Strait; Ungava Bay). Q2017 geometric means and 95 % confidence intervals were compared with data from the Canadian Health Measures Survey Cycle 6 (2018-2019) (CHMS). Halogenated OPEs were systematically detected and generally found at higher concentrations than non-halogenated OPEs in both Q2017 and CHMS. Furthermore, urinary levels of BCIPP and BDCIPP (halogenated) were lower in Q2017 compared to CHMS while concentrations of DPhP, DpCP and DoCP (non-halogenated) were similar between Q2017 and CHMS. Across the 16 metabolites measured in Q2017, BCIPHIPP (halogenated) had the highest levels (geometric mean: 1.40 μg/g creatinine). This metabolite was not measured in CHMS and should be included in future surveys. Overall, our results show that Inuit in Nunavik are exposed to lower or similar OPEs levels than the rest of the general Canadian population suggesting that the main current exposure to OPEs may be from consumer goods containing flame retardants and imported from the south rather than long-range atmospheric transport to the Arctic.
Collapse
Affiliation(s)
- Emilie Nero
- Department of Health and Society, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Élyse Caron-Beaudoin
- Department of Health and Society, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada; Department of Physical and Environmental Sciences, University of Toronto Scarborough, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Ontario, Canada.
| | - Amira Aker
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Département de médecine sociale et Préventive, Université Laval, Québec, Québec, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Québec, Canada
| | - Pierre Ayotte
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Québec, Canada; Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Caty Blanchette
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Mélanie Lemire
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada; Institut de Biologie Intégrative et des systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
5
|
Cheng X, Lu Q, Lin N, Mao D, Yin S, Gao Y, Tian Y. Prenatal exposure to a mixture of organophosphate flame retardants and infant neurodevelopment: A prospective cohort study in Shandong, China. Int J Hyg Environ Health 2024; 258:114336. [PMID: 38460461 DOI: 10.1016/j.ijheh.2024.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Previous studies have suggested that prenatal exposure to organophosphate flame retardants (OPFRs) may have adverse effect on early neurodevelopment, but limited data are available in China, and the overall effects of OPFRs mixture are still unclear. OBJECTIVE This study aimed to investigate the association between prenatal exposure to OPFR metabolites mixture and the neurodevelopment of 1-year-old infants. METHODS A total of 270 mother-infant pairs were recruited from the Laizhou Wan (Bay) Birth Cohort in China. Ten OPFR metabolites were measured in maternal urine. Neurodevelopment of 1-year-old infants was assessed using the Gesell Developmental Schedules (GDS) and presented by the developmental quotient (DQ) score. Multivariate linear regression and weighted quantile sum (WQS) regression models were conducted to estimate the association of prenatal exposure to seven individual OPFR metabolites and their mixture with infant neurodevelopment. RESULTS The positive rates of seven OPFR metabolites in the urine of pregnant women were greater than 70% with the median concentration ranged within 0.13-3.53 μg/g creatinine. The multivariate linear regression model showed significant negative associations between bis (1-chloro-2-propyl) phosphate (BCIPP), din-butyl phosphate (DnBP), and total OPFR metabolites exposure and neurodevelopment in all infants. Results from the WQS model consistently revealed that the OPFR metabolites mixture was inversely associated with infant neurodevelopment. Each quartile increased in the seven OPFR metabolites mixture was associated with a 1.59 decrease (95% CI: 2.96, -0.21) in gross motor DQ scores, a 1.41 decrease (95% CI: 2.38, -0.43) in adaptive DQ scores, and a 1.08 decrease (95% CI: 2.15, -0.02) in social DQ scores, among which BCIPP, bis (1, 3-dichloro-2-propyl) phosphate (BDCIPP) and DnBP were the main contributors. CONCLUSION Prenatal exposure to a mixture of OPFRs was negatively associated with early infant neurodevelopment, particularly in gross motor, adaptive, and social domains.
Collapse
Affiliation(s)
- Xiaomeng Cheng
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Nan Lin
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dandan Mao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shengju Yin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
6
|
Peng Y, Shi C, Wang C, Li Y, Zeng L, Zhang J, Huang M, Zheng Y, Chen H, Chen C, Li H. Review on typical organophosphate diesters (di-OPEs) requiring priority attention: Formation, occurrence, toxicological, and epidemiological studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132426. [PMID: 37683352 DOI: 10.1016/j.jhazmat.2023.132426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
The impact of primary metabolites of organophosphate triesters (tri-OPEs), namely, organophosphate diesters (di-OPEs), on the ecology, environment, and humans cannot be ignored. While extensive studies have been conducted on tri-OPEs, research on the environmental occurrence, toxicity, and health risks of di-OPEs is still in the preliminary stage. Understanding the current research status of di-OPEs is crucial for directing future investigations on the production, distribution, and risks associated with environmental organophosphate esters (OPEs). This paper specifically reviews the metabolization process from tri-OPEs to di-OPEs and the occurrence of di-OPEs in environmental media and organisms, proposes typical di-OPEs in different media, and classifies their toxicological and epidemiological findings. Through a comprehensive analysis, six di-OPEs were identified as typical di-OPEs that require prioritized research. These include di-n-butyl phosphate (DNBP), bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCIPP), and diphenyl phosphate (DPHP). This review provides new insights for subsequent toxicological studies on these typical di-OPEs, aiming to improve our understanding of their current status and provide guidance and ideas for research on the toxicity and health risks of di-OPEs. Ultimately, this review aims to enhance the risk warning system of environmental OPEs.
Collapse
Affiliation(s)
- Yi Peng
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Chongli Shi
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Chen Wang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Yu Li
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lingjun Zeng
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jin Zhang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Mengyan Huang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yang Zheng
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Haibo Chen
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Chao Chen
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Hui Li
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|