1
|
Cui X, Tang M, Zhu T. A water probe for direct pH measurement of individual particles via micro-Raman spectroscopy. J Environ Sci (China) 2025; 149:200-208. [PMID: 39181634 DOI: 10.1016/j.jes.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 08/27/2024]
Abstract
The acidity of atmospheric aerosols influences fundamental physicochemical processes that affect climate and human health. We recently developed a novel and facile water-probe-based method for directly measuring of the pH for micrometer-size droplets, providing a promising technique to better understand aerosol acidity in the atmosphere. The complex chemical composition of fine particles in the ambient air, however, poses certain challenges to using a water-probe for pH measurement, including interference from interactions between compositions and the influence of similar compositions on water structure. To explore the universality of our method, it was employed to measure the pH of ammonium, nitrate, carbonate, sulfate, and chloride particles. The pH of particles covering a broad range (0-14) were accurately determined, thereby demonstrating that our method can be generally applied, even to alkaline particles. Furthermore, a standard spectral library was developed by integrating the standard spectra of common hydrated ions extracted through the water-probe. The library can be employed to identify particle composition and overcome the spectral overlap problem resulting from similar effects. Using the spectral library, all ions were identified and their concentrations were determined, in turn allowing successful pH measurement of multicomponent (ammonium-sulfate-nitrate-chloride) particles. Insights into the synergistic effect of Cl-, NO3-, and NH4+ depletion obtained with our approach revealed the interplay between pH and volatile partitioning. Given the ubiquity of component partitioning and pH variation in particles, the water probe may provide a new perspective on the underlying mechanisms of aerosol aging and aerosol-cloud interaction.
Collapse
Affiliation(s)
- Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Yu YQ, Zhu T. Concentration-dependent effects of reductive pulmonary inhalants on ultrafine particle-induced oxidative stress: Insights for health risk assessment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 19:100339. [PMID: 38107555 PMCID: PMC10724529 DOI: 10.1016/j.ese.2023.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
The impact of reductive pulmonary inhalants on ultrafine particles (UFPs)-induced pulmonary oxidative stress remains a crucial consideration, yet the concentration-dependent effects of these inhalants have remained unexplored. Here we synthesized composite UFPs simulating atmospheric UFPs, primarily composed of metals and quinones. We subjected these UFPs to varying concentrations (0-7000 μM) of two reductive pulmonary inhalants, N-acetylcysteine and salbutamol, to assess their influence on oxidative potential, measured through the dithiothreitol assay (OPDTT). Simultaneously, we analysed the soluble metal content of UFPs to uncover potential relationships between oxidative potential and metal solubility. Our results unveil a dual role played by these inhalants in shaping the OPDTT of composite UFPs. Specifically, OPDTT generally increased as inhalant concentrations rose from 0 to 300 μM. However, an intriguing reversal occurred when concentrations exceeded 500 μM, resulting in a decline in OPDTT. Relative to untreated UFPs, these inhalants induced promotion and inhibition effects within concentration ranges of 100-500 and >1000 μM, respectively. While no significant correlation emerged between OPDTT and soluble metal content as inhalant concentrations ranged from 0 to 7000 μM, noteworthy positive correlations emerged at lower inhalant concentrations (e.g., N-acetylcysteine at 0-300 μM). These findings provide insights into the potential influence of reductive pulmonary inhalants on health risks associated with UFP exposure, further underscoring the need for continued research in this critical area.
Collapse
Affiliation(s)
- Ya-qi Yu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| |
Collapse
|
3
|
Wang N, Pei H, Xiang W, Li T, Lin S, Wu J, Chen Z, Wu H, Li C, Wu H. Rapid Screening of Microalgae as Potential Sources of Natural Antioxidants. Foods 2023; 12:2652. [PMID: 37509744 PMCID: PMC10378671 DOI: 10.3390/foods12142652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
In order to rapidly screen microalgae species as feedstocks for antioxidants, extracts were obtained from 16 microalgae strains (under 11 genera, 7 classes) using two methods: a one-step extraction with ethanol/water and a three-step fractionating procedure using hexane, ethylacetate, and water successively. Measuring the total phenol content (TPC), total carotenoid content (TCC), and antioxidant activity of the extracts, indicating TPC and TCC, played an important role in determining the antioxidant activity of the microalgae. A weighted scoring system was used to evaluate the antioxidant activity, and the scores of microalgal samples from two extraction methods were calculated using the same system. Among the investigated microalgae, Euglena gracilis SCSIO-46781 had the highest antioxidant score, contributing to high TPC and TCC, followed by Arthrospira platensis SCSIO-44012, Nannochloropsis sp. SCSIO-45224, Phaeodactylum tricornutum SCSIO-45120, and Nannochloropsis sp. SCSIO-45006, respectively. Additionally, the above-mentioned five strains are currently being applied in commercial production, indicating this system could be effective not only for screening microalgal antioxidants, but also for screening microalgal species/strains with strong adaptation to environmental stress, which is a critical trait for their commercial cultivation.
Collapse
Affiliation(s)
- Na Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiwei Pei
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Tao Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Shengjie Lin
- Guangzhou Keneng Cosmetic Scientific Research Co., Ltd., Guanghzou 510800, China
| | - Jiayi Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Zishuo Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houbo Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Chuanmao Li
- Guangzhou Keneng Cosmetic Scientific Research Co., Ltd., Guanghzou 510800, China
| | - Hualian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| |
Collapse
|