1
|
Guo Y, Zhu L, Zhang L, Tang X, Li X, Ge Y, Li F, Yang J, Lu S, Chen J, Zhou X. Temporal Variation and Industry-Specific Differences of the Use of Volatile Organic Compounds from 2018 to 2023 and Their Health Risks in a Typical Industrially Concentrated Area in South China. TOXICS 2024; 12:634. [PMID: 39330562 PMCID: PMC11436172 DOI: 10.3390/toxics12090634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
The risk of occupational exposure to organic solvents varies across industries due to factors such as processing materials, ventilation conditions, and exposure duration. Given the dynamic nature of organic solvent use and occupational exposures, continuous monitoring and analysis are essential for identifying high-risk hazards and developing targeted prevention strategies. Therefore, this study aims to analyze the use of organic solvents and volatile organic compounds (VOCs) in different industries in Bao'an District, Shenzhen, China, from 2018 to 2023, to understand their temporal variation and industry-specific differences and to identify high-risk occupational hazards. This study includes 1335 organic solvent samples, used by 414 different industry enterprises, and 1554 air samples. The result shows that the usage of organic solvents in various industries decreased with the outbreak of the pandemic and, conversely, increased as the situation improved. The most frequently detected volatile components in organic solvents were alkanes, followed by aromatic hydrocarbons. The ratios of the detection frequency of VOCs to the total number of detected categories increased year by year after 2020, indicating a tendency towards reduction and concentration of the types of organic solvents used in industrial production. Among the 8 high-risk VOCs, toluene (22.5%), n-hexane (22.0%), xylene (16.1%), and ethylbenzene (15.3%) have relatively high detection rates, suggesting that they need to be focused on in occupational health. Through air samples, the results show that trichloroethylene and xylene pose a high risk to human health (HQ > 1). We recommend that industry should strengthen monitoring of these two VOCs.
Collapse
Affiliation(s)
- Yijia Guo
- Public Health Service Center, Bao'an District, Shenzhen 518126, China
| | - Lihua Zhu
- Public Health Service Center, Bao'an District, Shenzhen 518126, China
| | - Liyin Zhang
- Public Health Service Center, Bao'an District, Shenzhen 518126, China
| | - Xinxin Tang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinjie Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Feng Li
- Public Health Service Center, Bao'an District, Shenzhen 518126, China
| | - Jilong Yang
- Public Health Service Center, Bao'an District, Shenzhen 518126, China
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jinru Chen
- Public Health Service Center, Bao'an District, Shenzhen 518126, China
| | - Xiaotao Zhou
- Public Health Service Center, Bao'an District, Shenzhen 518126, China
| |
Collapse
|
2
|
Zhang M, Chen C, Sun Y, Wang Y, Du P, Ma R, Li T. Association between Ambient Volatile Organic Compounds Exposome and Emergency Hospital Admissions for Cardiovascular Disease. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5695-5704. [PMID: 38502526 DOI: 10.1021/acs.est.3c08937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The limited research on volatile organic compounds (VOCs) has not taken into account the interactions between constituents. We used the weighted quantile sum (WQS) model and generalized linear model (GLM) to quantify the joint effects of ambient VOCs exposome and identify the substances that play key roles. For a 0 day lag, a quartile increase of WQS index for n-alkanes, iso/anti-alkanes, aromatic, halogenated aromatic hydrocarbons, halogenated saturated chain hydrocarbons, and halogenated unsaturated chain hydrocarbons were associated with 1.09% (95% CI: 0.13, 2.06%), 0.98% (95% CI: 0.22, 1.74%), 0.92% (95% CI: 0.14, 1.69%), 1.03% (95% CI: 0.14, 1.93%), 1.69% (95% CI: 0.48, 2.91%), and 1.85% (95% CI: 0.93, 2.79%) increase in cardiovascular disease (CVD) emergency hospital admissions, respectively. Independent effects of key substances on CVD-related emergency hospital admissions were also reported. In particular, an interquartile range increase in 1,1,1-trichloroethane, methylene chloride, styrene, and methylcyclohexane is associated with a greater risk of CVD-associated emergency hospital admissions [3.30% (95% CI: 1.93, 4.69%), 3.84% (95% CI: 1.21, 6.53%), 5.62% (95% CI: 1.35, 10.06%), 8.68% (95% CI: 3.74, 13.86%), respectively]. We found that even if ambient VOCs are present at a considerably low concentration, they can cause cardiovascular damage. This should prompt governments to establish and improve concentration standards for VOCs and their sources. At the same time, policies should be introduced to limit VOCs emission to protect public health.
Collapse
Affiliation(s)
- Mengxue Zhang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yue Sun
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Peng Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Runmei Ma
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tiantian Li
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
3
|
Ren H, Xia Z, Yao L, Qin G, Zhang Y, Xu H, Wang Z, Cheng J. Investigation on ozone formation mechanism and control strategy of VOCs in petrochemical region: Insights from chemical reactivity and photochemical loss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169891. [PMID: 38190918 DOI: 10.1016/j.scitotenv.2024.169891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
To investigate disparities in VOCs pollution characteristics, O3 generation activity, and source apportionment outcomes resulting from photooxidation, online monitoring of 106 VOCs was conducted in Jinshan District, Shanghai from April to October 2020. The observed VOCs concentrations (VOCs-obs) were 47.1 ppbv and 59.2 ppbv for clear days (CD) and O3-polluted days (OPD), respectively. The increase in daytime concentrations of alkenes is a significant factor contributing to the enhanced atmospheric photochemical activity during the OPD period, corroborated by VOCs-loss, ozone formation potential (OFP), propy-equiv concentration, and LOH. The sensitivity analysis of O3-NOx-VOCs indicated that O3 formation was in a transitional regime towards NOx-limited conditions. The results of positive matrix factorization (PMF) demonstrated that refining and petrochemicals (20.8-25.0 %), along with oil and gas evaporation (15.6-16.7 %) were the main sources of VOCs concentrations. Notably, source apportionment based on VOCs-obs underestimated the contributions from sources of reactive components. It is worth highlighting that the sunlight impact & background source was identified as the major contributor to LOH (21.6 %) and OFP (25.3 %), signifying its significant role in O3 formation. This study reiterates the importance of controlling reactive VOC components to mitigate O3 pollution and provides a scientific foundation for air quality management, with emphasis on priority species and controlling sources.
Collapse
Affiliation(s)
- Huarui Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongyan Xia
- Fengxian District Environmental Monitoring Station, Shanghai 201400, China
| | - Lingbo Yao
- Fengxian District Environmental Monitoring Station, Shanghai 201400, China
| | - Guimei Qin
- Sinopec Shanghai Petrochemical Co., Ltd., Shanghai 200540, China
| | - Yu Zhang
- Tianjin Product Quality Inspection Technology Research Institute, Tianjin 300384, China
| | - Hui Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuo Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinping Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Mangotra A, Singh SK. Volatile organic compounds: A threat to the environment and health hazards to living organisms - A review. J Biotechnol 2024; 382:51-69. [PMID: 38242502 DOI: 10.1016/j.jbiotec.2023.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/10/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
Volatile organic compounds (VOCs) are the organic compounds having a minimum vapor pressure of 0.13 kPa at standard temperature and pressure (293 K, 101 kPa). Being used as a solvent for organic and inorganic compounds, they have a wide range of applications. Most of the VOCs are non-biodegradable and very easily become component of the environment and deplete its purity. It also deteriorates the water quality index of the water bodies, impairs the physiology of living beings, enters the food chain by bio-magnification and degrades, decomposes and manipulates the physiology of living organisms. To unveil the adverse impacts of volatile organic compounds (VOCs) and their rapid eruption and interference in the living world, a review has been designed. This review presents an insight into the currently available VOCs, their sources, applications, sampling methods, analytic procedures, imposition on the health of aquatic and terrestrial communities and their contamination of the environment. Elaboration has been done on representation of toxicological effects of VOCs on vertebrates, invertebrates, and birds. Subsequently, the role of environmental agencies in the protection of environment has also been illustrated.
Collapse
Affiliation(s)
- Anju Mangotra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, 144411 Punjab, India.
| | - Shailesh Kumar Singh
- School of Agriculture, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, 144411 Punjab, India.
| |
Collapse
|
5
|
Wang S, Wu X, Chen X. Detailed mechanism study of volatile organic compound decomposition and oxidation removal based on a ReaxFF MD method. RSC Adv 2024; 14:5863-5874. [PMID: 38362082 PMCID: PMC10865303 DOI: 10.1039/d3ra08122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/11/2024] [Indexed: 02/17/2024] Open
Abstract
Volatile organic compounds (VOCs) are typical air pollutants as well as gaseous wastes that contain energy. Utilization and disposition of VOCs is currently an important research hotspot in the field of atmospheric environment. In this paper, the thermal cracking and oxidation reaction processes of typical VOCs components were modelled and analyzed by combining molecular dynamics and detailed reaction mechanisms, focusing on the effects of temperature, oxygen and other conditions on the conversion of VOCs. The results of molecular dynamics studies show that improving temperature and reaction time benefit the decomposition of VOCs. High temperatures under an inert atmosphere can sufficiently crack the VOCs themselves, but other by-products are generated, which in turn cause secondary pollution. The activation energies derived by ReaxFF-MD calculation are 328 kJ mol-1, 147 kJ mol-1 and 121 kJ mol-1 for toluene, styrene and benzaldehyde respectively, which is consistent with experimental results. Under the oxygen atmosphere, the conversion rate of VOCs is greatly increased and the reaction temperature is significantly reduced. Meanwhile, the oxidation reaction fully converts VOCs into non-polluting products such as CO2 and H2O. Detailed kinetic studies show that initial oxidation of toluene molecules raised by hydrogen abstraction reaction is the dominant step during toluene oxidation, which significantly improved the decomposition efficiency of toluene.
Collapse
Affiliation(s)
- Shuo Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
| | - Xiaoqing Wu
- School of Life Science and Engineering, Southwest Jiaotong University Chengdu 610041 China
| | - Xiaozhen Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
| |
Collapse
|