1
|
Zhou H, Timalsina H, Tang S, Circenis S, Kandume J, Cooke R, Si B, Bhattarai R, Zheng W. Simultaneous removal of nutrients and pharmaceuticals and personal care products using two-stage woodchip bioreactor-biochar treatment systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135882. [PMID: 39298967 DOI: 10.1016/j.jhazmat.2024.135882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The co-occurrence of nutrients and pharmaceuticals and personal care products (PPCPs) in sewage effluent can degrade water quality of the receiving watersheds. This study investigated the simultaneous removal of excess nutrients and PPCP contaminants by developing a novel woodchip bioreactor and biochar (B2) treatment system. The result revealed that woodchip bioreactors could effectively remove nitrate via a denitrification process and adsorb some PPCPs. Biochar as a secondary treatment system significantly reduced the concentrations of PPCPs and dissolved reactive phosphorus (DRP) (p < 0.05), compared to the woodchip bioreactor. The removal efficiencies of all targeted contaminants by the B2 system were evaluated using various hydraulic retention times (HRTs) and biochar types (pelletized versus granular biochar). Longer HRTs and smaller biochar particles (granular biochar) could enhance the removal efficiencies of targeted contaminants. Average contaminant removals were 77.25 % for nitrate-N, 99.03 % for DRP, 69.51 % for ibuprofen, 73.65 % for naproxen, 91.09 % for sitagliptin, and 96.96 % for estrone, with woodchip bioreactor HRTs of 12 ± 1.4 h and granular biochar HRTs of 2.1 ± 0.1 h. Notably, the second-stage biochar systems effectively mitigated by-products leaching from woodchip bioreactors. The presence of PPCPs in the woodchip bioreactors enriched certain species, such as Methylophilus (69.6 %), while inhibiting other microorganisms and reducing microbial community diversity. Furthermore, a scaled-up B2 system was analyzed and assessed, indicating that the proposed engineering treatment system could provide decades of service in real-world applications. Overall, this study suggests that the B2 system has promising applications for addressing emerging and conventional contaminants.
Collapse
Affiliation(s)
- Hongxu Zhou
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Haribansha Timalsina
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Shuai Tang
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Sophie Circenis
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Jason Kandume
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Richard Cooke
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Buchun Si
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Rabin Bhattarai
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA.
| | - Wei Zheng
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
| |
Collapse
|
2
|
Ware A, Hess S, Gligor D, Numer S, Gregory J, Farmer C, Raner GM, Medina HE. Identification of Plant Peroxidases Catalyzing the Degradation of Fluorinated Aromatics Using a Peroxidase Library Approach. Eng Life Sci 2024; 24:e202400054. [PMID: 39502856 PMCID: PMC11532638 DOI: 10.1002/elsc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 11/08/2024] Open
Abstract
In this work, the degradation of mono- and polyfluorinated phenolic compounds was demonstrated by a series of crude plant peroxidases, including horseradish root (HRP) and six members of the Cucurbita genus. Highly active samples were identified using a library screening approach in which more than 50 crude plant samples were initially evaluated for defluorination activity toward 4-fluorophenol. The highest concentrations were observed in the HRP, pumpkin skin (PKS), and butternut squash skin (BNS), which consistently gave the highest intrinsic rates of decomposition for all the substrates tested. Although HRP exhibited a significant decrease in activity with increased fluorination of the phenolic substrate, PKS showed only minor reductions. Furthermore, in silico studies indicated that the active site of HRP poorly accommodates the steric bulk of additional fluorines, causing the substrate to dock farther from the catalytic heme and thus slowing the catalysis rate. We propose that the PKS active site might be larger, allowing closer access to the perfluorinated substrate, and therefore maintaining higher activity compared to the HRP enzyme. However, detailed kinetic characterization studies of the peroxidases are recommended. Conclusively, the high catalytic activity of PKS and its high yield per gram of tissue make it an excellent candidate for developing environmentally friendly biocatalytic methods for degrading fluorinated aromatics. Finally, the success of the library approach in identifying highly active samples for polyfluorinated aromatic compound (PFAC) degradation suggests the method may find utility in the quest for other advanced catalysts for PFAS degradation.
Collapse
Affiliation(s)
- Ashton Ware
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | - Sally Hess
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | - David Gligor
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | - Sierra Numer
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | - Jack Gregory
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | - Carson Farmer
- School of EngineeringLiberty UniversityLynchburgVirginiaUSA
| | - Gregory M. Raner
- Department of Biology and ChemistryLiberty UniversityLynchburgVirginiaUSA
| | | |
Collapse
|
3
|
Ji S, Cheng H, Rinklebe J, Liu X, Zhu T, Wang M, Xu H, Wang S. Remediation of neonicotinoid-contaminated soils using peanut shell biochar and composted chicken manure: Transformation mechanisms of geochemical fractions. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133619. [PMID: 38310841 DOI: 10.1016/j.jhazmat.2024.133619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
Soil remediation techniques are promising approaches to relieve the adverse environmental impacts in soils caused by neonicotinoids application. This study systematically investigated the remediation mechanisms for peanut shell biochar (PSB) and composted chicken manure (CCM) on neonicotinoid-contaminated soils from the perspective of transformation of geochemical fractions by combining a 3-step sequential extraction procedure and non-steady state model. The neonicotinoid geochemical fractions were divided into labile, moderate-adsorbed, stable-adsorbed, bound, and degradable fractions. The PSB and CCM addition stimulated the neonicotinoid transformation in soils from labile fraction to moderate-adsorbed and stable-adsorbed fractions. Compared with unamended soils, the labile fractions decreased from 47.6% ± 11.8% of the initial concentrations to 12.1 ± 9.3% in PSB-amended soils, and 7.1 ± 4.9% in PSB and CCM-amended soils, while the proportions of moderate-adsorbed and stable-adsorbed fractions correspondingly increased by 1.8-2.4 times and 2.3-4.8 times, respectively. A small proportion (<4.8%) in bound fractions suggested there were rather limited bound-residues after 48 days incubation. The PSB stimulated the -NO2-containing neonicotinoid-degraders, which promoted the degradable fractions of corresponding neonicotinoids by 8.2 ± 6.3%. Degradable fraction of neonicotinoids was the dominant fate in soils, which accounted for 58.3 ± 16.7%. The findings made beneficial theoretical supplements and provided valuable empirical evidence for the remediation of neonicotinoid-contaminated soils.
Collapse
Affiliation(s)
- Shu Ji
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Haomiao Cheng
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Xiang Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Tengyi Zhu
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Menglei Wang
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Shanghai Construction No.2 (Group) Co., Ltd, Shanghai 200080, China
| | - Hanyang Xu
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Shengsen Wang
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|