1
|
Sui X, Xu Q, Tao H, Zhu B, Li G, Zhang Z. Vegetation Dynamics and Recovery Potential in Arid and Semi-Arid Northwest China. PLANTS (BASEL, SWITZERLAND) 2024; 13:3412. [PMID: 39683205 DOI: 10.3390/plants13233412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
The arid and semi-arid regions of northwest China are characterized by sparse vegetation and fragile ecosystems, making them highly susceptible to the impacts of climate change and human activities. Based on observed meteorological data, the Normalized Difference Vegetation Index (NDVI), the Lund-Potsdam-Jena dynamic global vegetation model (LPJ), a vegetation recovery potential model, and the MK trend test method, this study investigated the spatiotemporal distribution of vegetation recovery potential in northwest China and its relationship with global warming and increasing precipitation. The results indicated that vegetation in northwest China significantly increased, with greening closely related to trends in warming and wetting during 1982-2019. However, the vegetation recovery potential declined due to climate change. Central and southern Xinjiang and central Qinghai exhibited higher grassland recovery potential, while the central Gobi Desert areas of northwest China had lower recovery potential. The eastern part of northwest China was highly sensitive to drought, with moderate vegetation growth and recovery potential. Remote sensing data indicated a 2.3% increase in vegetation coverage in the region, with an average vegetation recovery potential index (IVCP) of 0.31. According to the results of LPJ model, the average vegetation recovery potential index for northwest China was 0.14, indicating a 1.1% improvement potential in vegetation coverage. Overall, climate warming and wetting facilitated vegetation recovery in northwest China, particularly in mountainous areas. The findings provide valuable insights for ecological restoration efforts and offer practical guidance for combating desertification and enhancing sustainable development. Moreover, these results underline the importance of incorporating vegetation recovery potential into regional policy-making to improve environmental resilience in the face of ongoing climate change.
Collapse
Affiliation(s)
- Xiran Sui
- Joint Innovation Center for Modern Forestry Studies, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Qiongling Xu
- Joint Innovation Center for Modern Forestry Studies, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Tao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Bin Zhu
- Joint Innovation Center for Modern Forestry Studies, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Guangshuai Li
- Joint Innovation Center for Modern Forestry Studies, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Zengxin Zhang
- Joint Innovation Center for Modern Forestry Studies, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
2
|
Li L, Peng Q, Li Z, Cai H. Evolution of drought characteristics and propagation from meteorological to agricultural drought under the influences of climate change and human activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26713-26736. [PMID: 38459284 DOI: 10.1007/s11356-024-32709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Understanding the propagation of agricultural droughts (AD) is important to comprehensively assess drought events and develop early warning systems. The present study aims to assess the impacts of climate change and human activities on drought characteristics and propagation from meteorological drought (MD) to AD in the Yellow River Basin (YRB) over the 1950-2021 period using the Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized Soil Moisture Index (SSMI). In total, the YRB was classified into three groups of catchments for spring wheat and four groups of catchments for winter wheat based on different human influence degrees (HId). In addition, the entire study period was divided into periods with natural (NP), low (LP), and high (HP) impacts of human activities, corresponding to 1950-1971, 1972-1995, and 1996-2021, respectively. The results demonstrated the significance and credibility of the application of the natural and human-impacted catchment comparison method for drought characteristics and propagation from meteorological to agricultural drought in the YRB. Winter wheat showed a more pronounced drying trend than spring wheat under both MD and AD. The results showed meteorological drought intensity (MDI) and agricultural drought intensity (ADI) intensified for spring and winter wheat in NP, with correspondingly a short propagation time, followed by those in the LP and HP in catchments minimally impacted by human activities. On the other hand, increases in the MDI and ADI, as well as in their times, for both spring and winter wheat were observed from the LP to the HP in all catchments. The MDI, ADI, and their propagation times for winter wheat generally showed greater fluctuations than those for spring wheat. Human activities increasingly prolonged the drought propagation time. In contrast, climate change insignificantly shortened the drought propagation time.
Collapse
Affiliation(s)
- Liang Li
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, Xianyang, China
- Institute of Water-Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, 712100, Xianyang, China
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, 712100, Xianyang, China
| | - Qing Peng
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, Xianyang, China
- Institute of Water-Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, 712100, Xianyang, China
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, 712100, Xianyang, China
| | - Zongyang Li
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, Xianyang, China
- Institute of Water-Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, 712100, Xianyang, China
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, 712100, Xianyang, China
| | - Huanjie Cai
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, 712100, Xianyang, China.
- Institute of Water-Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, 712100, Xianyang, China.
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, 712100, Xianyang, China.
| |
Collapse
|
3
|
Gao Y, Zhao T, Tu T, Tian Y, Zhang Y, Liu Z, Zheng Y, Chen X, Wang H. Spatiotemporal links between meteorological and agricultural droughts impacted by tropical cyclones in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169119. [PMID: 38070559 DOI: 10.1016/j.scitotenv.2023.169119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023]
Abstract
Both droughts and tropical cyclones (TCs) are among the world's most widespread natural disasters. This paper is concentrated on the effects of TCs on the links between meteorological droughts (MDs) and agricultural droughts (ADs). Specifically, changes in characteristics of drought events and variations in propagation features of matched MD and AD event pairs are quantified by using the renowned three-dimensional connected components algorithm; both alleviation and exacerbation effects of TCs are evaluated; and the Spearman's correlation is employed to identify potential contributors to exacerbated droughts after TCs. The results show that TCs exhibit more pronounced and widespread alleviation effects on MD events compared to AD events. >98 % of small-scale drought events are terminated by TCs, leading to 65 % reduction in the total area of MD events smaller than 50,000 km2 and 32 % reduction in AD events of the same scale. In the meantime, TCs can reshape the spatiotemporal links between MDs and ADs by reducing the overall propagation rate from 77 % to 40 % and ameliorating the characteristics of drought event pairs with higher propagation efficiency, by >40 %. After TCs, over 55 % of drought exacerbations in TC-affected regions occur first in the vicinity of the residual large-scale AD events. This occurrence is partially associated with the reduction in moisture exports from these residual droughts downwind to the interior of TC-affected regions, a process potentially facilitated by the TC-induced temperature cooling. The in-depth evaluation of this paper presents useful information for better drought preparation and mitigation under TCs.
Collapse
Affiliation(s)
- Yankang Gao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and School of Civil Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Tongtiegang Zhao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and School of Civil Engineering, Sun Yat-Sen University, Guangzhou, China.
| | - Tongbi Tu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and School of Civil Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Yu Tian
- Department of Water Resources, China Institute of Water Resource and Hydropower Research, Beijing 100038, China
| | - Yongyong Zhang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and School of Civil Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Yanhui Zheng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and School of Civil Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xiaohong Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and School of Civil Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Hao Wang
- Department of Water Resources, China Institute of Water Resource and Hydropower Research, Beijing 100038, China
| |
Collapse
|
4
|
Wei X, Huang S, Li J, Huang Q, Leng G, Liu D, Guo W, Zheng X, Bai Q. The negative-positive feedback transition thresholds of meteorological drought in response to agricultural drought and their dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167817. [PMID: 37838043 DOI: 10.1016/j.scitotenv.2023.167817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
There are complex bidirectional feedback relationships among different types of droughts (e.g., meteorological and agricultural droughts). As agricultural drought intensifies, meteorological drought response to agricultural drought may be changed from negative to positive feedback. Nevertheless, the negative-positive feedback transition thresholds of meteorological drought in response to agricultural drought and their dynamics have remained unsolved. Herein, we proposed a new quantitative method to characterize the mutual feedback between meteorological drought and agricultural drought based on the vine copula function for the first time in this study. The negative-positive feedback transition threshold and the sensitivity of the feedback were quantified under certain drought conditions. In order to investigate the feedback relationship dynamics under a changing environment, the total study period was evenly divided into two stages: stage 1 (1982-1999) and stage 2 (2000-2018). Finally, the random forest method was used to explore the dominant factors on the transition threshold. Results indicate that: (1) the negative-positive feedback transition thresholds in August is generally lower than June and July in mainland China, the basin with large threshold is the Southwest River Basin; (2) the sensitivity of meteorological drought in response to agricultural drought was higher in positive feedback than in negative feedback; (3) the transition thresholds of stage 2 was mostly reduced, while the feedback sensitivity of positive feedback was mostly increased; and (4) compared with the single factor, the land-meteorological coupling strength (the correlation between precipitation and soil moisture) dominants the negative-positive feedback transition threshold. This study sheds new insights into droughts feedback.
Collapse
Affiliation(s)
- Xiaoting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Shengzhi Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| | - Jianfeng Li
- Department of Geography, Hong Kong Baptist University, Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Qiang Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Guoyong Leng
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Liu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Wenwen Guo
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xudong Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Qingjun Bai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|