1
|
Cai T, Gu J, Liang Y, Chen K, Zhou H, Peng J, Yang J, Lu G, Huang W, Dang Z, Yang C. Occurrence of microplastics and distinct plastisphere in aquatic environments of metal mining areas in South China. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137910. [PMID: 40090306 DOI: 10.1016/j.jhazmat.2025.137910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
Microplastic pollution is a growing global environmental concern, significantly impacting aquatic ecosystems. In metal mining regions, acid mine drainage (AMD) can exacerbate the issue as microplastics may carry heavy metals, heightening the risks to both human health and ecosystems. AMD can also form a distinct plastisphere further influencing the behavior and distribution of heavy metals. This study, beginning with tailing storage, examined microplastic contamination in river water and sediment in a mining region of South China. The concentration of microplastics in water ranged from 0.2 to 6.2 items/L, predominantly comprising PS, PE and PP. In contrast, the concentration of microplastics in the sediments ranged from 14.1 to 84.8 items/kg and were mainly composed of PP. Most microplastics in both water samples and sediments are smaller than 100 microns. Industrial wastewater from mining activities was identified as the predominant source of microplastics in the AMD-polluted upstream areas while agricultural and domestic waste contributed more significantly in the downstream areas. Plastisphere biodiversity was enhanced, while the colonization of pivotal species on plastic substrates was significantly facilitated in AMD-polluted aquatic environments. In these environments, the ecological niche afforded by plastics was of ecological significance. This study offers the direct evidence of microplastic pollution and highlights the critical ecological role of microplastics in aquatic ecosystems affected by AMD.
Collapse
Affiliation(s)
- Tingting Cai
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jingyi Gu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yi Liang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ketong Chen
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hong Zhou
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiamin Peng
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jingjing Yang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guining Lu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhi Dang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Chen Yang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
2
|
Yin Y, Yang S, Liu F, Wang X, Chen Y, Luo X. Effect mechanism of low-molecular-weight organic acids during sulfidation of As(V)-bearing ferrihydrite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126031. [PMID: 40086781 DOI: 10.1016/j.envpol.2025.126031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
Sulfide induces the reductive dissolution of iron (oxyhydr) oxides, the primary host phases for arsenic (As), thereby triggering As release. We investigates the physicochemical mechanisms of three types of low molecular weight organic acids (LMWOAs) on sulfide-mediated reductive dissolution of As(V)-ferrihydrite and As release using batch experiments combined with hydro-chemical, spectroscopic, and microscopic analyses. Arsenate dominated the aqueous (97.2-100 %) and solid phases throughout the experiment. LMWOAs accelerated S(-II) consumption and As release by inhibiting FeS formation, with rates ordered as citric acid (CA) > oxalic acid (OA) > malic acid (MA) > control (Kb). At S(-II): Fe = 0.5, maximum As release was 11.78 % (Kb) and 14.60 % (CA); at S(-II): Fe = 1, it was 27.58 % (Kb) and 30.71 % (OA). LMWOAs enhanced As release via non-reductive ligand dissolution of As(V)-ferrihydrite. Secondary mineral formation in later stages re-immobilized As, with mineral layers ≥50 nm thick. LMWOAs interacted differently with secondary minerals: CA primarily adsorbed on surfaces, while MA integrated into the matrix. LMWOAs influenced As redistribution in secondary minerals, increasing contamination risks. Thus, the complex effects of organic matter (OM) on Fe, S, and As biogeochemistry must be considered in risk assessments and remediation strategies for As-contaminated sites in sulfidic environments.
Collapse
Affiliation(s)
- Yitong Yin
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Shanshan Yang
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Fei Liu
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Xue Wang
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Yue Chen
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Ximing Luo
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China.
| |
Collapse
|
3
|
Zhou Y, Guo C, Deng Y, Jiang Y, Yin M, Chen K, Zhang S, Lu G, Dang Z. Birnessite enhanced Cr(III) oxidation during subsurface geochemical processes: Role of Mn(III)-induced nonphotochemical reactive oxygen species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125436. [PMID: 39638231 DOI: 10.1016/j.envpol.2024.125436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Cr(III) oxidation by birnessite was the dominant geologic source of Cr(VI), which increases the environmental mobility and toxicity of Cr, threatening ecological safety. Photochemically hydroxyl radical (•OH) generated by birnessite was widely accepted to be the dominant reactive oxygen species (ROS) oxidating Cr(III). However, birnessite and Cr mainly co-exist in dark subsurface soils, with contribution of nonphotochemical ROS remaining unclear. In this work, free-radical quenching experiments, electrochemistry method and density functional theory (DFT) calculations were performed to elucidate ROS generation mechanisms during Cr(III) oxidation in simulated light-deprived environment. The results indicated that •OH was completely suppressed and nonphotochemical O2•- still accelerated Cr(III) oxidation in dark aerobic conditions with the contribution of 15.3%-19.1%. Moreover, DFT calculations proved that O2•- was produced by O2 molecules adsorbed on oxygen vacancies in the structure, thus being generated spontaneously in the dark. The oxidation contribution of O2•- was undetectable after extracting Mn(III), indicating that electron transfer occurred between Mn(III) and O2 to generate O2•-. Additionally, intervention of Cd2+ (for occupying oxygen vacancies) did not reduce participation of •OH, but resulted in suppression of electron transport which greatly reduced the production of O2•-, thereby affecting Cr(III) oxidation process. The above findings provide new insights on Cr(III) oxidation by manganese oxides and is able to have profound significance for predicting the fate of Cr in subsurface environments.
Collapse
Affiliation(s)
- Yuting Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| | - Yanping Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Yanjun Jiang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meiling Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Kai Chen
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou, China
| | - Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Jin X, Guo C, Huang Q, Tao X, Li X, Xie Y, Dang Z, Zhou J, Lu G. Arsenic redistribution associated with Fe(II)-induced jarosite transformation in the presence of polygalacturonic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173444. [PMID: 38788951 DOI: 10.1016/j.scitotenv.2024.173444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Jarosite exists widely in acid-sulfate soil and acid mine drainage polluted areas and acts as an important host mineral for As(V). As a metastable Fe(III)-oxyhydoxysulfate mineral, its dissolution and transformation have a significant impact on the biogeochemical cycle of As. Under reducing conditions, the trajectory and degree of abiotic Fe(II)-induced jarosite transformation may be greatly influenced by coexisting dissolved organic matter (DOM), and in turn influencing the fate of As. Here, we explored the impact of polygalacturonic acid (PGA) (0-200 mg·L-1) on As(V)-coprecipitated jarosite transformation in the presence of Fe(II) (1 mM) at pH 5.5, and investigated the repartitioning of As between aqueous and solid phase. The results demonstrated that in the system without both PGA and Fe(II), jarosite gradually dissolved, and lepidocrocite was the main transformation product by 30 d; in Fe(II)-only system, lepidocrocite appeared by 1 d and also was the mainly final product; in PGA-only systems, PGA retarded jarosite dissolution and transformation, jarosite might be directly converted into goethite; in Fe(II)-PGA systems, the presence of PGA retarded Fe(II)-induced jarosite dissolution and transformation but did not alter the pathway of mineral transformation, the final product mainly still was lepidocrocite. The retarding effect on jarosite dissolution enhanced with the increase of PGA content. The impact of PGA on Fe(II)-induced jarosite transformation mainly was related to the complexation of carboxyl groups of PGA with Fe(II). The dissolution and transformation of jarosite drove pre-incorporated As transferred into the phosphate-extractable phase, the presence of PGA retarded jarosite dissolution and maintained pre-incorporated As stable in jarosite. The released As promoted by PGA was retarded again and almost no As was released into the solution by the end of reactions in all systems. In systems with Fe(II), no As(III) was detected and As(V) was still the dominant redox species.
Collapse
Affiliation(s)
- Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Qi Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, 528000 Foshan, China
| | - Yingying Xie
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Guangdong, Chaozhou 521041, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Jin X, Guo C, Tao X, Li X, Xie Y, Dang Z, Lu G. Divergent redistribution behavior of divalent metal cations associated with Fe(II)-mediated jarosite phase transformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124004. [PMID: 38641039 DOI: 10.1016/j.envpol.2024.124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The Fe(II)/Fe(III) cycle is an important driving force for dissolution and transformation of jarosite. Divalent heavy metals usually coexist with jarosite; however, their effects on Fe(II)-induced jarosite transformation and different repartitioning behavior during mineral dissolution-recrystallization are still unclear. Here, we investigated Fe(II)-induced (1 mM Fe(II)) jarosite conversion in the presence of Cd(II), Mn(II), Co(II), Ni(II) and Pb(II) (denoted as Me(II), 1 mM), respectively, under anaerobic condition at neutral pH. The results showed that all co-existing Me(II) retarded Fe(II)-induced jarosite dissolution. In the Fe(II)-only system, jarosite first rapidly transformed to lepidocrocite (an intermediate product) and then slowly to goethite; lepidocrocite was the main product. In Fe(II)-Cd(II), -Mn(II), and -Pb(II) systems, coexisting Cd(II), Mn(II) and Pb(II) retarded the above process and lepidocrocite was still the dominant conversion product. In Fe(II)-Co(II) system, coexisting Co(II) promoted lepidocrocite transformation into goethite. In Fe(II)-Ni(II) system, jarosite appeared to be directly converted into goethite, although small amounts of lepidocrocite were detected in the final product. In all treatments, the appearance or accumulation of lepidocrocite may be also related to the re-adsorption of released sulfate. By the end of reaction, 6.0 %, 4.0 %, 76.0 % 11.3 % and 19.2 % of total Cd(II), Mn(II), Pb(II) Co(II) and Ni(II) were adsorbed on the surface of solid products. Up to 49.6 %, 44.3 %, and 21.6 % of Co(II), Ni(II), and Pb(II) incorporated into solid product, with the reaction indicating that the dynamic process of Fe(II) interaction with goethite may promote the continuous incorporation of Co(II), Ni(II), and Pb(II).
Collapse
Affiliation(s)
- Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, 528000, Foshan, China
| | - Yingying Xie
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Guangdong, Chaozhou, 521041, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|