1
|
Hong Q, Wang K, Huang Y, Zhang Z, Jiang Y, Wang S, Wang H. Enhanced methane production from anaerobic digestion of waste activated sludge with weak magnetic field: Insights into performances and mechanisms. BIORESOURCE TECHNOLOGY 2024; 408:131174. [PMID: 39084537 DOI: 10.1016/j.biortech.2024.131174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The impact of weak magnetic field (WMF) on anaerobic digestion (AD) performance of waste activated sludge (WAS) and underlying mechanism were investigated. Results showed that WMF significantly stimulated the methane yield by 12.9∼25.1% with 15 and 30 mT WMF addition, but high WMF (60 mT) attenuated the positive effect. The WMF enriched the anaerobic microbes, especially the acetoclastic and hydrogenotrophic methanogen. Additionally, the WMF dramatically facilitated the metabolic pathways of key enzymes for methanogenesis, which was validated by the significant increase of absolute abundance of anaerobic functional genes (mcrA). The enzyme activities of ATP and F420 were also significantly promoted by 30 mT WMF, but high WMF (60 mT) resulted in increased activity of lactate dehydrogenase. This study reveals that low WMF can promote AD performance of WAS through enhancing microbial activities especially methanogen, but high WMF leads to the loss of cell membrane integrity and attenuates its positive effect.
Collapse
Affiliation(s)
- Qiankun Hong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; College of Civil Engineering and Architecture, Zhejiang Tongji Vocational College of Science and Technology, Hangzhou 311231, China
| | - Kanming Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yan Huang
- Ecological and Environmental Monitoring Station of Deqing County, Huzhou 313200, China
| | - Zhengyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yulian Jiang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shengnan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Gao M, Guo B, Zou X, Guo H, Yao Y, Chen Y, Guo J, Liu Y. Mechanisms of anammox granular sludge reactor effluent as biostimulant: Shaping microenvironment for anammox metabolism. BIORESOURCE TECHNOLOGY 2024; 406:130962. [PMID: 38876278 DOI: 10.1016/j.biortech.2024.130962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Effluent from anammox granular sludge (AnGS) bioreactor contains microbes and microbial products. This study explored mechanisms of utilizing AnGS-effluent as biostimulant for anammox process enhancement. Compared with no AnGS-effluent supplemented control reactor, 5.0 and 1.3 times higher ammonium nitrogen and total inorganic nitrogen removal rates, respectively were obtained with continuous AnGS-effluent supplementation after 98 days' operation. Anammox bacteria from Candidatus Brocadia accounted for 0.1 % (DNA level) and 1.3 %-1.5 % (RNA level) in control reactor, and 2.9 % (DNA level) and 54.5 %-55.4 % (RNA level) in the AnGS-effluent-fed reactor. Influent microbial immigration evaluation showed that bacterial immigration via AnGS-effluent supplementation was not the main contributor to active anammox community development. Amino acids biosynthesis, B-vitamins and coenzymes metabolism related pathways were facilitated by AnGS-effluent supplementation. AnGS-effluent supplementation aided anammox metabolic activity by shaping microenvironment and microbial interactions. This study provides insights into enhancing anammox bacterial metabolism with AnGS-effluent microbial products as biostimulant.
Collapse
Affiliation(s)
- Mengjiao Gao
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Bing Guo
- Centre for Environmental Health and Engineering (CEHE), School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Xin Zou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane QLD 4001, Queensland, Australia
| | - Hengbo Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yiduo Yao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Youpeng Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane QLD 4001, Queensland, Australia.
| |
Collapse
|
3
|
Liu D, Cen R, Yuan A, Wu M, Luo C, Chen M, Liang X, He T, Wu W, He T, Tian G. Effects of continuous low-speed biogas agitation on anaerobic digestion of high-solids pig manure: Performance and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120355. [PMID: 38364542 DOI: 10.1016/j.jenvman.2024.120355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
This study aimed to investigate effects of continuous low-speed biogas agitation on the anaerobic digestion (AD) performance and microbial community of high-solids pig manure (total solids content of 10%). Our results reveal that at a biogas agitation intensity of 1.10 L/g feed VS/d, CH4 production increased by 16.67% compared to the non-agitated condition, the removal efficiency of H2S reached 63.18%, and the abundance of Methanosarcina was the highest. The presence of Hungateiclostridiaceae was associated with H2S concentrations. An increasing biogas agitation intensity led to an elevated pH and a decreased oxidation-reduction potential (ORP). Acetate concentrations, pH, and ORP values indicated changes in H2S concentrations. Sedimentibacter demonstrates the potential to indicate biogas agitation intensity and pH. We demonstrate that continuous low-speed biogas agitation effectively increases CH4 production and reduces H2S concentrations in AD of high-solids pig manure, offering a potential technical pathway for developing AD processes for high-solids pig manure, it also demonstrates that AD process can reduce the risk of pathogen and parasite transmission.
Collapse
Affiliation(s)
- Dan Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ruxiang Cen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ai Yuan
- Agricultural Ecology and Resource Protection Station of Guizhou Province, Guiyang, 550001, China
| | - Mingxiang Wu
- Agricultural Environmental Monitoring Station in Yu-ping County, Yu-ping County of Guizhou Province, 554000, China
| | - Can Luo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Manman Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Xiwen Liang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tenbing He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Wenxuan Wu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Guangliang Tian
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Institute of New Rural Development, Laboratory of Pollution Control and Resource Utilization Technology for Mountainous Livestock and Poultry Farming, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
4
|
Valenzuela EI, Gutiérrez-Uribe JA, Franco-Morgado M, Cervantes-Avilés P. Navigating the waters of nixtamalization: Sustainable solutions for maize-processing wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168674. [PMID: 38007134 DOI: 10.1016/j.scitotenv.2023.168674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Maize-processing wastewater, also known as nejayote, does represent a widespread residue originating from both small- and large-scale factories that produce maize-based products using the alkaline maize-cooking process (nixtamalization). Nejayote is a high-strength wastewater containing significant concentrations of soluble and insoluble organic and inorganic compounds resulting from the disintegration of maize, as well as from the substantial quantity of lime (Ca(OH)2) used in the process. In order to make nixtamalization more sustainable in terms of water usage and to mitigate the health and environmental issues related to nejayote discharges into environmental matrices and public sewage systems, appropriate and effective treatment processes must be applied either before effluent disposal or for water reuse purposes. With this problematic as the central topic, we conducted a comprehensive review of relevant literature addressing this issue spanning from the mid-1980s to the present day. This review covers three primary aspects: i) the extensive variability observed in the physicochemical composition of maize-processing wastewater, ii) the various biological and physicochemical methods developed for its treatment, and iii) the potential for organic and mineral resource recovery from this waste. Although initial efforts to treat nejayote were left behind for decades, recent years have witnessed a resurgence of research interest in these research topics mainly underpinned by the urgency to conserve water resources. Based on the comprehensive evaluation of the existing literature, we identified the existing limitations on nejayote treatment and identified prospects for developing robust and technically feasible treatment possibilities. Within this review, we propose three main approaches for wastewater treatment and water reuse: physicochemical-based technologies, bioprocess in tandem with membrane technology, and low-cost bioprocesses coupled to physicochemical methods.
Collapse
Affiliation(s)
- Edgardo I Valenzuela
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Janet A Gutiérrez-Uribe
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico; Tecnológico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, 64849 Monterrey, Mexico
| | - Mariana Franco-Morgado
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico; Tecnológico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, 64849 Monterrey, Mexico
| | - Pabel Cervantes-Avilés
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico.
| |
Collapse
|