1
|
Aguayo F, Tapia JC, Calaf GM, Muñoz JP, Osorio JC, Guzmán-Venegas M, Moreno-León C, Levican J, Andrade-Madrigal C. The Role of Xenobiotics and Anelloviruses in Colorectal Cancer: Mechanisms and Perspectives. Int J Mol Sci 2025; 26:4354. [PMID: 40362591 PMCID: PMC12072659 DOI: 10.3390/ijms26094354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Xenobiotics are non-natural chemical compounds to which the human population is exposed. Chronic exposure to certain xenobiotics is associated with various diseases, including cancer development. Anelloviruses (AVs), including Torque Teno Virus (TTV), Torque Teno Mini Virus (TTMV), and Torque Teno Midi Virus (TTMDV), are ubiquitous viruses found in the general population. As no disease has been definitively associated with AVs, they are sometimes referred to as "viruses awaiting a disease". This review explores the potential roles of xenobiotics and AVs in colorectal cancer (CRC) development and suggests a potential interplay between them. Evidence suggests an association between certain xenobiotics (like pesticides, cigarette smoke components, and dietary factors) and CRC, while such an association is less clear for AVs. The high prevalence of AVs suggests these infections alone may be insufficient to disrupt homeostasis; thus, additional factors might be required to promote disease, potentially including cancer.
Collapse
Affiliation(s)
- Francisco Aguayo
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (M.G.-V.); (C.M.-L.); (C.A.-M.)
| | - Julio C. Tapia
- Laboratorio de Transformación Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile;
| | - Julio C. Osorio
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (M.G.-V.); (C.M.-L.); (C.A.-M.)
| | - Matías Guzmán-Venegas
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (M.G.-V.); (C.M.-L.); (C.A.-M.)
| | - Carolina Moreno-León
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (M.G.-V.); (C.M.-L.); (C.A.-M.)
| | - Jorge Levican
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Cristian Andrade-Madrigal
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (M.G.-V.); (C.M.-L.); (C.A.-M.)
| |
Collapse
|
2
|
He J, Zhao G, Chen M, Ren X, Zhu P, Liu Z, Zhou J, Chen H, Xiao C, Li XG. Identification and functional analysis of hub genes involved in deoxynivalenol-induced enterotoxicity in porcine (Sus scrofa). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117544. [PMID: 39675078 DOI: 10.1016/j.ecoenv.2024.117544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Deoxynivalenol (DON) is a type of mycotoxin commonly found in food and animal feed. When consumed, it can have harmful effects on the intestine. The porcine digestive system is physiologically similar to that of humans, making pigs a suitable model for studying DON-induced enterotoxicity. However, the exact ways DON causes intestinal damage in pigs still need to be fully understood. To address this knowledge gap, this study aimed to identify hub genes associated with enterotoxicity caused by DON exposure. Transcriptomic datasets from porcine jejunal explants exposed to DON were extensively analyzed using bioinformatic techniques in this study. A total of 265 differentially expressed genes (DEGs) were identified, with 238 being up-regulated and 27 being down-regulated, indicating that exposure to DON tends to increase gene expression. Further analysis revealed that the up-regulated DEGs were enriched in tumor necrosis factor, nuclear factor kappa-B, mitogen-activated protein kinases, and Janus kinase/signal transducer and activator of transcription-related signaling pathways. In addition, Weighted gene co-expression network analysis was performed to identify highly co-expressed modules. Then, genes in the highest co-expressed module were intersected with the up-regulated DEGs to construct a Protein-Protein Interaction network, resulting in 237 overlapping genes. Subsequently, 6 hub genes (CXCR4, PTGS2, ICAM1, IL-1A, IL-1B, and IL-10) that played a central role in the response to DON were identified using cytohubba in conjunction with the Molecular Complex Detection. In summary, exposure to DON is more likely to result in increased rather than decreased gene expression. Six of the upregulated genes, which are involved in immunoregulation and inflammation, were identified as hub genes related to DON-induced enterotoxicity in pigs. This study provides new insights into the mechanisms underlying DON-induced enterotoxicity and could guide interventions for this condition.
Collapse
Affiliation(s)
- Jinhua He
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - Geng Zhao
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China; Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Mingxia Chen
- School of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Qingyuan 511500, China
| | - Ximing Ren
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Peizhi Zhu
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhizhong Liu
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China; Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiayi Zhou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hanwei Chen
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China; Panyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou 511450, China
| | - Chuqiao Xiao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Yu S, Zou L, Zhao J, Zhu Y. Resveratrol Alleviates Fumonisin B1-Induced Cytotoxicity in Sertoli Cells. Foods 2024; 13:3810. [PMID: 39682882 DOI: 10.3390/foods13233810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Fumonisin B1 is a common food contaminant that has been found to adversely affect the reproductive system, especially Sertoli cells. However, the potential mitigation of FB1-induced cytotoxicity in Sertoli cells has not been fully elaborated. Resveratrol is a natural substance with anti-inflammatory, antioxidant, and anti-tumor properties. Herein, the protective effects of resveratrol against FB1-induced cytotoxicity in Sertoli cells were examined in this work. The mouse Sertoli cell line (TM4) was used as a research model. These results indicated that FB1 (40 μM and 80 μM) significantly reduces cell viability, disrupts the cell barrier, and induces an inflammatory response in TM4 cells. To our surprise, resveratrol (15 μM) showed an ability to reverse adverse effects induced by FB1 (40 μM). Furthermore, resveratrol could alleviate the FB1-induced apoptosis, decrease ROS level, and promote the antioxidant enzymes (CAT and SOD2) expression in FB1-treated TM4 cells. The addition of resveratrol could mitigate FB1-induced promoted phosphorylation of JNK and upregulation of c-jun expression. Interestingly, resveratrol was also able to mitigate the cytotoxicity of FB2 (40 μM), FB3 (40 μM), and an FB1-FB2-FB3 (40 μM-40 μM-40 μM) combination group on TM4 cells. In summary, this research displayed that resveratrol may alleviate fumonisin B1-induced cytotoxicity in Sertoli cells via inhibiting oxidative stress-mediated JNK/c-jun signaling pathway-induced apoptosis. This study provides new insights into the prevention and treatment of FB1-induced testicular toxicity and highlights the potential application value of resveratrol.
Collapse
Affiliation(s)
- Song Yu
- Division of Chemical Toxicity and Safety Assessment, Shanghai Institutes of Preventive Medicine, Shanghai 200336, China
| | - Lianpeng Zou
- Division of Chemical Toxicity and Safety Assessment, Shanghai Institutes of Preventive Medicine, Shanghai 200336, China
| | - Jiawei Zhao
- Division of Chemical Toxicity and Safety Assessment, Shanghai Institutes of Preventive Medicine, Shanghai 200336, China
| | - Yiping Zhu
- Division of Chemical Toxicity and Safety Assessment, Shanghai Institutes of Preventive Medicine, Shanghai 200336, China
| |
Collapse
|
4
|
Ma R, Fan Y, Yang X, Liu C, Wan J, Xu C, Wang R, Feng J, Jiao Z. Detoxification of DON-induced hepatotoxicity in mice by cold atmospheric plasma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116547. [PMID: 38843744 DOI: 10.1016/j.ecoenv.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024]
Abstract
Deoxynivalenol (DON) is one of the most common mycotoxins distributed in food and feed, which causes severe liver injury in humans and animals. Cold atmospheric plasma (CAP) has received much attention in mycotoxin degradation due to the advantages of easy operation, high efficiency, and low temperature. So far, the majority of studies have focused on the degradation efficiency and mechanism of CAP on DON, while there is still little information available on the hepatotoxicity of DON after CAP treatment. Herein, this study aimed to investigate the effect of CAP on DON-induced hepatotoxicity both in vitro and in vivo and its underlying mechanisms. The results showed that 120-s CAP treatment achieved 97 % degradation of DON. The vitro hepatotoxicity of DON in L02 cells was significantly reduced with CAP treatment time. Meanwhile, CAP markedly alleviated DON-induced liver injury in mice including the balloon-like degeneration of liver tissues and elevation of AST and ALP level. The underlying mechanism for CAP detoxification of DON-induced hepatotoxicity was further elucidated. The results showed that DON caused severe oxidative stress in cells by suppressing the antioxidant signaling pathway of Nrf2/HO-1/NQO-1, consequently leading to mitochondrial dysfunction and cell apoptosis, accompanied by cellular senescence and inflammation. CAP blocked DON inhibition on the Nrf2/HO-1/NQO-1 signaling pathway through the efficient degradation of DON, accordingly alleviating the oxidative stress and liver injury induced by DON. Therefore, CAP is an effective method to eliminate DON hepatotoxicity, which can be applied in the detoxification of mycotoxin-contaminated food and feed to ensure human and animal health.
Collapse
Affiliation(s)
- Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Yongqin Fan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Xudong Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Chunli Liu
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Cui Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Ruixue Wang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junxia Feng
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China.
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Wang Q, Li A, Yu H, Wang C, Wang T, Zhang J. Evaluation of Cross-Talk and Alleviate Potential of Cytotoxic Factors Induced by Deoxynivalenol in IPEC-J2 Cells Interference with Curcumin. Int J Mol Sci 2024; 25:6984. [PMID: 39000093 PMCID: PMC11241398 DOI: 10.3390/ijms25136984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin produced by Fusarium graminearum, and curcumin (CUR) is a natural polyphenolic compound found in turmeric. However, the combined treatment of CUR and DON to explore the mitigating effect of CUR on DON and their combined mechanism of action is not clear. Therefore, in this study, we established four treatment groups (CON, CUR, DON and CUR + DON) to investigate their mechanism in the porcine intestinal epithelial cells (IPEC-J2). In addition, the cross-talk and alleviating potential of CUR interfering with DON-induced cytotoxic factors were evaluated by in vitro experiments; the results showed that CUR could effectively inhibit DON-exposed activated TNF-α/NF-κB pathway, attenuate DON-induced apoptosis, and alleviate DON-induced endoplasmic reticulum stress and oxidative stress through PERK/CHOP pathways, which were verified at both mRNA and protein levels. In conclusion, these promising findings may contribute to the future use of CUR as a novel feed additive to protect livestock from the harmful effects of DON.
Collapse
Affiliation(s)
- Qiyuan Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Chuanqi Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Ting Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jing Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
6
|
Zeng J, Lin Z, Tang J, Chen X, Huang K, Gan F. The role of JAK2/STAT3 pathway in non-cytotoxic concentrations of DON-induced aggravation of inflammatory response in IL-10 deficient RAW264.7 cells. Food Chem Toxicol 2024; 186:114557. [PMID: 38432439 DOI: 10.1016/j.fct.2024.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Deoxynivalenol (DON) as a mycotoxin was commonly found in food and cereals which can affect immune function and inflammatory response. The majority of foods contain DON at levels below the official limit. This study aimed to evaluate the effects of non-cytotoxic concentration of DON on inflammation and its mechanisms using the IL-10 gene-silenced RAW264.7 cell model. The results showed that a non-cytotoxic concentration of DON at 25 ng/ml aggravated IL-10 knockdown-induced inflammation, which was manifested by increasing IL-1β and TNF-α mRNA expression, migration and phagocytosis, decreasing IL-10 mRNA expression, and enhancing JAK2/STAT3 phosphorylation. Adding JAK2 inhibitor AG490 attenuated the aggravating effect of DON on IL-10 knockdown-induced inflammation. In conclusion, a non-cytotoxic concentration of DON enhances the inflammatory response through the JAK2/STAT3 signaling pathway when inflammation occurs in the body. These results indicated that non-cytotoxic concentrations of DON could aggravate inflammation when inflammation was induced by IL-10 knockdown, which increases vigilance against DON contamination at low concentration especially when an animal's body has inflammation.
Collapse
Affiliation(s)
- Junya Zeng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ziman Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jiangyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|