1
|
Ma F, Dai Z, Cai F, Zhang X, Ma Y, Wang D. Developing a machine learning-based predictive model for cesium sorption distribution coefficient on crushed granite. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2025; 283:107628. [PMID: 39908716 DOI: 10.1016/j.jenvrad.2025.107628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
The sorption of radionuclides on granite has been extensively studied over the past few decades due to its significance in the safety assessment of geological disposal for high-level radioactive waste (HLW). The sorption properties of granite for radionuclides exhibit considerable variability under different experimental conditions. To reduce the time and cost associated with traditional experiments, this study developed a data-driven approach utilizing machine learning (ML) algorithms to predict the sorption distribution coefficients of cesium (Cs) on crushed granite efficiently. Four ML algorithms, namely AdaBoost, GBDT, LightGBM, and XGBoost, were employed to construct predictive models using a dataset of 384 data points. All models demonstrated strong performance, with R2 values exceeding 0.8 for both the training and test sets. Comparative analysis of evaluation metrics indicated that the XGBoost model exhibited the best predictive performance and generalization ability. An explanation analysis of the XGBoost model further revealed the importance and influence of each input feature in predicting the distribution coefficient of Cs on crushed granite. The features affecting radionuclide sorption on granite were ranked by importance as follows: solid/liquid ratio, ion strength, pH, contact time, initial concentration, and maximum particle size. The underlying sorption mechanisms by which different input features affect the sorption coefficient, as derived from shapley additive explanations (SHAP) analysis, correspond with experimental observations. The approach proposed in this study can serve as a supplement to resource-intensive experimental methods, providing new insights into predicting the sorption behavior of radionuclides on crushed granite for the safety assessment of HLW geological disposal.
Collapse
Affiliation(s)
- Funing Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhenxue Dai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China; College of Construction Engineering, Jilin University, Changchun, 130026, China.
| | - Fangfei Cai
- School of Architecture and Engineering, Qingdao Binhai University, Qingdao, 266555, China.
| | - Xiaoying Zhang
- College of Construction Engineering, Jilin University, Changchun, 130026, China
| | - Yue Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Dayong Wang
- Water Resources Research Institute of Shandong Province, Jinan, 250013, China
| |
Collapse
|
2
|
Wang Z, Jia S, Dai Z, Yin S, Zhang X, Yang Z, Thanh HV, Ling H, Soltanian MR. Environmental risk evaluation for radionuclide transport through natural barriers of nuclear waste disposal with multi-scale streamline approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176084. [PMID: 39245391 DOI: 10.1016/j.scitotenv.2024.176084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Natural barriers, encompassing stable geological formations that serve as the final bastion against radionuclide transport, are paramount in mitigating the long-term contamination risks associated with the nuclear waste disposal. Therefore, it is important to simulate and predict the processes and spatial-temporal distributions of radionuclide transport within these barriers. However, accurately predicting radionuclide transport on the field scale is challenging due to uncertainties associated with parameter scaling. This study develops an integrated evaluation framework that combines upscaled parameters, streamline transport models, and response surface techniques to systematically assess environmental risk metrics and parameter uncertainties across different scales. Initially, upscaling methods are established to estimate the prior interval of critical transport parameters at the field scale, and streamline models are derived by considering the radionuclides transport with a variety of physicochemical mechanisms and geological characterizations in natural barriers. To assess uncertainty ranges of the risk metrics related to upscaled parameters, uncertainty quantification is performed on the ground of 5000 Monte Carlo simulations. The results indicate that the upscaled dispersivity of fractured media (αLf) has a relatively high sensitivity ranking on release dose for all nuclides, and upscaled matrix sorption coefficient (Kd) of Pu-242 strongly affects breakthrough time and release dose of Pu-242. Facilitated by robust response surface with the lowest R2 of 0.89, it is shown that the release doses of Pu-242 and Pb-210 increase under conditions of low Kd and αLf, respectively. Furthermore, statistical analysis reveals that employing limited laboratory-scale parameters results in narrower confidence intervals for risk metrics, while upscaling methods better account for the highly heterogeneous properties of large-scale field conditions. The developed risk evaluation framework provides valuable insights for utilizing upscaled parameters and modeling radionuclide transport within natural barriers under various scenarios.
Collapse
Affiliation(s)
- Zihao Wang
- College of Construction Engineering, Jilin University, Changchun, China; Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun, China
| | - Sida Jia
- School of Resources and Safety Engineering, Chongqing University, Chongqing, China.
| | - Zhenxue Dai
- College of Construction Engineering, Jilin University, Changchun, China; Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun, China; School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China.
| | - Shanxian Yin
- Hebei State Key Laboratory of Mine Disaster Prevention, North China Institute of Science and Technology, Beijing, Yanjiao, China
| | - Xiaoying Zhang
- College of Construction Engineering, Jilin University, Changchun, China; Institute of Intelligent Simulation and Early Warning for Subsurface Environment, Jilin University, Changchun, China
| | - Zhijie Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Hung Vo Thanh
- Laboratory for Computational Mechanics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam; MEU Research Unit, Middle East University, Amman, Jordan
| | - Hui Ling
- CNNC Key Laboratory on Geological Disposal of High-level Radioactive Waste, Beijing Research Institute of Uranium Geology, Beijing, China
| | - Mohamad Reza Soltanian
- Departments of Geosciences and Environmental Engineering, University of Cincinnati, OH, USA
| |
Collapse
|
3
|
Wang J, Han Z, Zhang C, Wang M, Li H, Gao D. Effects of soil colloids on adsorption and migration of benzo(a)pyrene on contaminated sites under runoff infiltration processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 353:124150. [PMID: 38735466 DOI: 10.1016/j.envpol.2024.124150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
In the environment, soil colloids are widespread and possess a significant adsorption capacity. This makes them capable of transporting different pollutants, presenting a potential risk to human and ecological well-being. This study aimed to examine the adsorption and co-migration characteristics of benzo(a)pyrene (BaP) and soil colloids in areas contaminated with organic substances, utilizing both static and dynamic batch experiments. In the static adsorption experiments, it was observed that the adsorption of BaP onto soil colloids followed the pseudo-second-order kinetic model (R2 = 0.966), and the adsorption isotherm conformed to the Langmuir model (R2 = 0.995). The BaP and soil colloids primarily formed bonds through π-π interactions and hydrogen bonds. The dynamic experimental outcomes revealed that elevating colloids concentration contributed to increased BaP mobility. Specifically, when the concentration of soil colloids in influent was 500 mg L-1, the mobility of BaP was 23.2 % compared to that without colloids of 13.4 %. Meanwhile, the lowering influent pH value contributed to increased BaP mobility. Specifically, when the influent pH value was 4.0, the mobility of BaP was 30.1 %. The BaP's mobility gradually declined as the initial concentration of BaP in polluted soil increased. Specifically, when the initial concentration of BaP in polluted soil was 5.27 mg kg-1, the mobility of BaP was 39.1 %. This study provides a support for controlling BaP pollution in soil and groundwater.
Collapse
Affiliation(s)
- Jianlong Wang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China.
| | - Zhimeng Han
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China
| | - Changhe Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; China Academy of Building Research, Beijing, 100013, China
| | - Meiqi Wang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China
| | - Hongxin Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China
| | - Dawen Gao
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
4
|
Cai F, Zhang X, Ma F, Qi L, Lu D, Dai Z. Differences and implications of strontium distribution coefficient on various granite compositional materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47899-47910. [PMID: 39012533 DOI: 10.1007/s11356-024-34351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
The distribution coefficient (Kd) of radionuclides is a crucial parameter in assessing the safety of high-level radioactive waste (HLW) geological repository. It is determined in the laboratory through batch and column experiments. However, differences in obtained Kd values from distinct experiments have not been thoroughly assessed and compared. This study evaluated strontium (Sr) sorption on different granite materials using static batch and dynamic experiments (column and core-flooding experiments). The results from batch sorption experiments showed higher Sr sorption on granite under acidic and strongly alkaline conditions, low solid-liquid ratios, and low ionic strength. In column experiments, a two-site sorption model was used to simulate Sr transport in crushed granite and mixed pure minerals. The sorption of Sr on crushed granite exhibited a higher affinity than that of mixed pure minerals. The dual-porosity transport model was employed to investigate Sr transport behavior in fractured granite in the core-flooding experiment. Kd obtained from batch sorption experiments are four to twenty times higher than those from column experiments, and two to three orders of magnitude higher than that from a core-flooding experiment. The results of this study provide valuable insights into safety assessment for the HLW geological repository.
Collapse
Affiliation(s)
- Fangfei Cai
- College of Construction Engineering, Jilin University, Changchun, 130026, China
| | - Xiaoying Zhang
- College of Construction Engineering, Jilin University, Changchun, 130026, China.
| | - Funing Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Linlin Qi
- Northeast Electric Power University, Jilin, 132012, China
| | - Di Lu
- Science and Technology Research Center of China Customs, Beijing, 100026, China
| | - Zhenxue Dai
- College of Construction Engineering, Jilin University, Changchun, 130026, China
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| |
Collapse
|
5
|
Ma F, Dai Z, Zhang X, Hu Y, Cai F, Wang W, Tian Y, Soltanian MR. Quantifying the impact of upscaled parameters on radionuclide transport in three-dimensional fracture-matrix systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172663. [PMID: 38653404 DOI: 10.1016/j.scitotenv.2024.172663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Assessing the long-term safety of geological repositories for high-level radioactive waste is critically dependent on understanding radionuclide transport in multi-scale fractured rocks. This study explores the influence of upscaled parameters on radionuclide movement within a three-dimensional fracture-matrix system using a discrete fracture-matrix (DFM) model. The developed numerical simulation workflow includes creating a random discrete fracture network, meshing of the fractures and matrix, assigning upscaled parameters, and conducting finite element simulations. We simulated the spatiotemporal evolution of radionuclide concentrations in the fractures and matrix over a century, revealing significant spatial heterogeneity driven by a heterogeneous seepage field. Employing geostatistics-based upscaling methods, we predicted the effective ranges of crucial solute transport parameters at the field scale. The matrix diffusion coefficient, matrix distribution coefficient, and longitudinal dispersivity were upscaled by factors of 2.0-3.0, 2.5-4.0, and 10-104, respectively, based on laboratory-scale measurements. Incorporating these upscaled parameters into the DFM model, we analyzed their impact on radionuclide transport. Our findings demonstrate that an upscaled matrix diffusion coefficient and matrix distribution coefficient result in a delayed transport of radionuclides in fractures by enhancing mass transfer between the fractures and rock matrix, while an upscaled longitudinal dispersivity accelerates transport by advancing the positions of concentration peaks. Sensitivity analysis revealed that the matrix distribution coefficient is the most impactful, followed by dispersivity and matrix diffusion coefficient. These insights are important for minimizing parameter uncertainties and enhancing the accuracy of predictions concerning radionuclide transport in multi-scale fractured rocks.
Collapse
Affiliation(s)
- Funing Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhenxue Dai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; College of Construction Engineering, Jilin University, Changchun 130026, China.
| | - Xiaoying Zhang
- College of Construction Engineering, Jilin University, Changchun 130026, China.
| | - Yingtao Hu
- Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Fangfei Cai
- College of Construction Engineering, Jilin University, Changchun 130026, China
| | - Weiliang Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yong Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Mohamad Reza Soltanian
- Departments of Geosciences and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
6
|
Zhang B, Zhu W, Hou R, Yue Y, Feng J, Ishag A, Wang X, Qin Y, Sun Y. Recent advances of application of bentonite-based composites in the environmental remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121341. [PMID: 38824894 DOI: 10.1016/j.jenvman.2024.121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Bentonite-based composites have been widely utilized in the removal of various pollutants due to low cost, environmentally friendly, ease-to-operate, whereas the recent advances concerning the application of bentonite-based composites in environmental remediation were not available. Herein, the modification (i.e., acid/alkaline washing, thermal treatment and hybrids) of bentonite was firstly reviewed; Then the recent advances of adsorption of environmental concomitants (e.g., organic (dyes, microplastics, phenolic and other organics) and inorganic pollutants (heavy metals, radionuclides and other inorganic pollutants)) on various bentonite-based composites were summarized in details. Meanwhile, the effect of environmental factors and interaction mechanism between bentonite-based composites and contaminants were also investigated. Finally, the conclusions and prospective of bentonite-based composites in the environmental remediation were proposed. It is demonstrated that various bentonite-based composites exhibited the high adsorption/degradation capacity towards environmental pollutants under the specific conditions. The interaction mechanism involved the mineralization, physical/chemical adsorption, co-precipitation and complexation. This review highlights the effect of different functionalization of bentonite-based composites on their adsorption capacity and interaction mechanism, which is expected to be helpful to environmental scientists for applying bentonite-based composites into practical environmental remediation.
Collapse
Affiliation(s)
- Bo Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; Research Center of Applied Geology of China Geological Survery, Chengdu, 610036, PR China
| | - Weiyu Zhu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Rongbo Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yanxue Yue
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jiashuo Feng
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Alhadi Ishag
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; Department of Chemical Engineering, Faculty of Engineering and Technical Studies, University of Kordofan, El Obeid, 51111, Sudan
| | - Xiao Wang
- Research Center of Applied Geology of China Geological Survery, Chengdu, 610036, PR China
| | - Yan Qin
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, PR China.
| | - Yubing Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
7
|
Ijaz I, Bukhari A, Gilani E, Nazir A, Zain H, Shaheen A, Shaik MR, Khan M, Assal ME. Preparation of iota-carrageenan@bentonite@4-phenyl-3-thiosemicarbazide ternary hydrogel for adsorption of Losartan potassium and sulfamethoxazole. Int J Biol Macromol 2024; 272:132690. [PMID: 38825270 DOI: 10.1016/j.ijbiomac.2024.132690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
A rising quantity of drugs has been discharged into the aquatic environment, posing a substantial hazard to public health. In the current work, a novel hydrogel (i.Carr@Bent@PTC), comprised of iota-carrageenan, bentonite, and 4-phenyl-3-thiosemicarbazide, was successfully prepared. The introduction of 4-phenyl-3-thiosemicarbazide and bentonite in iota-carrageenan significantly increased the mechanical strength of iota-carrageenan hydrogel and improved its degree of swelling, which can be attributed to the hydrophilic properties of PTC and Bent. The recorded contact angle was 70.8°, 59.1°, 53.9°, and 34.6° for pristine i.Carr, i.Carr@Bent, and i.Carr@Bent@PTC, respectively. The low contact angle measurement of the Bent and PTC loaded-i.Carr hydrogel was attributed to the hydrophilic Bent and PTC. The ternary i.Carr@Bent@PTC hydrogel demonstrated broad pH adaptability and excellent adsorption capacities for sulfamethoxazole (SMX) and losartan potassium (LP), i.e., 467.61 mg. g-1 and 274.43 mg. g-1 at 298.15 K, respectively. The pseudo-first-order (PSO) model provided a better fit for the adsorption kinetics. The adsorption of SMX and LP can be better explained by employing the Sips and Langmuir isotherm models. As revealed by XPS and FTIR investigations, π-π stacking, complexation, electrostatic interaction, and hydrogen bonding were primarily involved in the adsorption mechanisms.
Collapse
Affiliation(s)
- Irfan Ijaz
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore, Lahore 54700, Pakistan.
| | - Aysha Bukhari
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore, Lahore 54700, Pakistan.
| | - Ezaz Gilani
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore, Lahore 54700, Pakistan
| | - Ammara Nazir
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore, Lahore 54700, Pakistan
| | - Hina Zain
- Department of Chemistry, University of Cincinnati, OH 45221, United States
| | - Attia Shaheen
- Henan Key Laboratory of High-Temperature Functional Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed E Assal
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Zhang L, Li L, Chen K, Zhang Q, Shao J, Cui Y, Zhu J, Zhang A, Yang S. Adsorption-desorption of 241Am(Ⅲ) on montmorillonite colloids and quartz sand: Effects of pH, ionic strength, colloid concentration and grain size. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 275:107430. [PMID: 38615506 DOI: 10.1016/j.jenvrad.2024.107430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/16/2024]
Abstract
Clay colloids in the subsurface environment have a strong adsorption capacity for radionuclides, and the mobile colloids will carry the nuclides for migration, which would promote the movability of radionuclides in the groundwater environment and pose a threat to the ecosphere. The investigations of the adsorption/desorption behaviors of radionuclides in colloids and porous media are significant for the evaluation of the geological disposal of radioactive wastes. To illustrate the adsorption/desorption behaviors of 241Am(Ⅲ) in Na-montmorillonite colloid and/or quartz sand systems at different pH (5, 7 and 9), ionic strengths (0, 0.1 and 5 mM), colloid concentrations (300 and 900 mg/L), nuclide concentrations (500, 800, 1100 and 1400 Bq/mL) and grain sizes (40 and 60 mesh), a series of batch sorption-desorption experiments were conducted. Combining the analysis of the physical and chemical properties of Na-montmorillonite with the Freundlich model, the influencing mechanism of different controlling factors is discussed. The experimental results show that the adsorption/desorption behaviors of 241Am(Ⅲ) in Na-montmorillonite colloid and/or quartz sand strongly are influenced by the pH value and ionic strength of a solution, the colloid concentration as well as quartz sand grain size. The adsorption and desorption isotherms within all the experimental conditions could be well-fitted by the Freundlich model and the correlation coefficients (R2) are bigger than 0.9. With the increase in pH, the adsorption partition coefficient (Kd) at 241Am(Ⅲ)-Na-montmorillonite colloid two-phase system and 241Am(Ⅲ)-Na-montmorillonite colloid-quartz sand three-phase system presents a trend which increases firstly followed by decreasing, due to the changes in the morphology of Am with pH. The Kd of 241Am(Ⅲ) adsorption on montmorillonite colloid and quartz sand decreases with increasing in ionic strength, which is mainly attributed to the competitive adsorption, surface complexation and the reduction of surface zeta potential. Additionally, the Kd increases with increasing colloid concentrations because of the increase in adsorption sites. When the mean grain diameter changes from 0.45 to 0.3 mm, the adsorption variation trends of 241Am(Ⅲ) remain basically unchanged. The research results obtained in this work are meaningful and helpful in understanding the migration behaviors of radionuclides in the underground environment.
Collapse
Affiliation(s)
- Linlin Zhang
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Ling Li
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Ke Chen
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Qiulan Zhang
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Jingli Shao
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Yali Cui
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Jun Zhu
- Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences, Beijing, China; China Institute for Radiation Protection, Taiyuan, China.
| | - Aiming Zhang
- China Institute for Radiation Protection, Taiyuan, China
| | - Song Yang
- China Institute for Radiation Protection, Taiyuan, China
| |
Collapse
|
9
|
Zhang X, Cai F, Ma F, Reimus P, Qi L, Lu D, Soltanian MR, Dai Z. Investigating the role of Na-bentonite colloids in facilitating Sr transport in granite minerals through column experiments and modeling. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132851. [PMID: 39491990 DOI: 10.1016/j.jhazmat.2023.132851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Colloids play a crucial role in influencing the mobility of radionuclides in high-level radioactive waste repositories. However, the co-transport behavior of radionuclides and colloids in geological media remains insufficiently understood. This study investigated the transport of Strontium (Sr) in four types of granite minerals (quartz, biotite, K-feldspar, and plagioclase) in the presence and absence of Na-bentonite colloids (Na-BC) using column experiments. Employing a stepwise modeling strategy, this study first determined the basic flow and transport parameters through breakthrough curve analysis of the conservative tracer (Br). Then, the experimental data of Sr in the colloid-free Sr transport experiments and Na-BC in the Sr-colloid co-transport experiments were quantitatively explained using a two-site sorption model and a two kinetic sites model, respectively. Finally, the co-transport behavior of Sr and Na-BC was fitted using the colloid-facilitated solute transport model. The stepwise modeling allowed quantification of the kinetics of Sr sorption onto mobile and immobile Na-BC and highlighted the role of straining in Na-BC retention. In the absence of Na-BC, Sr transport experienced the greatest retardation in biotite, followed by plagioclase, K-feldspar, and quartz, respectively, which positively correlated with the specific surface area of the minerals. Moreover, Na-BC enhanced Sr transport with the same retardation order in all tested minerals, with recovery rate increments of 68.61%, 19.21%, 6.67%, and 4.33%, respectively. The transport of Sr in K-feldspar was found to be less affected by Na-BC compared to the other tested minerals, likely due to the strong cation exchange capacity of K+ among the cation components of minerals, making hydrated K+ more likely to exchange with Sr2+ on K-feldspar surfaces. These findings hold significant implications for assessing the risks associated with the transport of radionuclides in deep geological repositories.
Collapse
Affiliation(s)
- Xiaoying Zhang
- College of Construction Engineering, Jilin University, Changchun 130026, China
| | - Fangfei Cai
- College of Construction Engineering, Jilin University, Changchun 130026, China
| | - Funing Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Paul Reimus
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Linlin Qi
- College of Construction Engineering, Jilin University, Changchun 130026, China
| | - Di Lu
- Science and Technology Research Center of China Customs, Beijing, 100026, China
| | - Mohamad Reza Soltanian
- Department of Geosciences, University of Cincinnati, Cincinnati, OH, USA; Department of Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Zhenxue Dai
- College of Construction Engineering, Jilin University, Changchun 130026, China; School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, China.
| |
Collapse
|