1
|
Bessa Santos RM, Farias do Valle Junior R, Abreu Pires de Melo Silva MM, Tarlé Pissarra TC, Carvalho de Melo M, Valera CA, Leal Pacheco FA, Sanches Fernandes LF. A framework model to integrate sources and pathways in the assessment of river water pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123661. [PMID: 38417605 DOI: 10.1016/j.envpol.2024.123661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Metal and nutrient pollution, soil erosion, and alterations in climate and hydrology are prevalent issues that impact the water quality of riverine systems. However, integrated approaches to assess and isolate causes and paths of river water pollution are scarce, especially in the case of watersheds impacted by multiple hazardous activities. Therefore, a framework model for investigating the multiple sources of river water pollution was developed. The chosen study area was the Paraopeba River basin located in the Minas Gerais, Brazil. Besides multiple agriculture, industrial, and urban pollution sources, this region was profoundly affected by the rupture of the B1 tailings dam (in January 2019) at the Córrego do Feijão mine, resulting in the release of metal-rich waste. Considering this situation, thirty-nine physicochemical and hydromorphological parameters were examined in the Paraopeba River basin, in the 2019-2023 period. The analysis involved various statistical techniques, including bivariate and multivariate methods such as correlation analysis, principal component analysis, and clustering. The Paraopeba River was mainly impacted by metal contamination resulting from the dam collapse, whereas nutrient contamination, mainly from urban and industrial discharges, predominantly affected its tributaries. Additionally, the elevated concentrations of aluminum, iron, nitrate, and sulfate in both main river and tributaries can be attributed to diffuse and point source pollution. In terms of hydromorphology and soil type, the interaction between woody vegetation and erosion-resistant soils, especially latosols, contributes to the stability of riverbanks in the main river. Meanwhile, in the tributaries, the presence of neosols and sparse vegetation in urbanized areas promoted riverbank erosion potentially amplifying pollution. While the study was conducted in a particular watershed, the findings are based on a methodology that can be applied universally. Hence, the insights on surface water quality from this research can be a valuable resource for researchers studying watersheds with diverse pollution sources.
Collapse
Affiliation(s)
- Regina Maria Bessa Santos
- Centre for Research and Technology of Agro-Environment and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; Chemistry Research Centre, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Renato Farias do Valle Junior
- Instituto Federal do Triângulo Mineiro, Campus Uberaba, Laboratório de Geoprossessamento, Uberaba, MG 38064-790, Brazil
| | | | - Teresa Cristina Tarlé Pissarra
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil
| | - Marília Carvalho de Melo
- Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável, Cidade Administrativa do Estado de Minas Gerais, Rodovia João Paulo II, 4143 Bairro Serra Verde, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Alberto Valera
- Coordenadoria Regional das Promotorias de Justiça do Meio Ambiente das Bacias dos Rios Paranaíba e Baixo Rio Grande, Rua Coronel Antônio Rios, 951, Uberaba, MG 38061-150, Brazil
| | - Fernando António Leal Pacheco
- Chemistry Research Centre, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Luís Filipe Sanches Fernandes
- Centre for Research and Technology of Agro-Environment and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|