1
|
Zhang Y, Yuan J, Mao T. Impact of microplastics exposure on liver health: A comprehensive meta-analysis. Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110080. [PMID: 39579839 DOI: 10.1016/j.cbpc.2024.110080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Microplastics (MPs) are significant concerns affecting liver health. This is the first comprehensive meta-analysis, evaluating the impact of MPs on liver functions across various animal models, including mice, fish, crabs, and shrimp. Five databases, including PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE, and Web of Science, were used to select eligible studies. In all, 70 studies out of 1872 publications were included in the analysis, the impact of MPs on liver enzymes, oxidative stress markers, and inflammatory cytokines were evaluated. Our results revealed significant increases in liver enzymes ALT and AST, oxidative stress markers MDA, and pro-inflammatory cytokines IL-6 and TNF-α, along with a notable reduction in antioxidative enzymes like SOD, CAT, GSH, and GPx. These findings suggest that MPs exposure significantly disrupts liver function by inducing oxidative stress and inflammation. The results underscore the urgent need for targeted environmental policies and further research.
Collapse
Affiliation(s)
- Yizi Zhang
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD, United States
| | - Jiahui Yuan
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD, United States
| | - Ting Mao
- Alfred Dairy Science Laboratory, Department of Dairy and Food Science, South Dakota State University, Brookings, SD, United States.
| |
Collapse
|
2
|
Bhutto SUA, Akram M, You XY. Species sensitivity distributions of microplastics based on toxicity endpoints and particle characteristics: Implications of assessing ecological risk in Tai Lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125505. [PMID: 39662585 DOI: 10.1016/j.envpol.2024.125505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/27/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
The prevalence of microplastics (MPs) in Tai Lake poses significant environmental concerns; however, research on MPs' ecological risk assessment is limited. To advance our understanding of MPs' toxicity in Tai Lake, species sensitivity distributions (SSDs) were used to evaluate how organisms respond to different MPs properties and endpoints in Tai Lake. A total of 102 data points were categorized and utilized in SSD estimation. It was found that the hazardous concentration for 5% of species (HC5) for MPs is 237.98 (26.89-2.59 × 103) particles/L in Tai Lake. In terms of endpoints, the HC5 follows the descending order: reproduction 1.03 × 103 (16.30-6.05 × 103) > growth 153.36 (11.37-2.53 × 103) > mortality 67.60 (4.55-4.29 × 103) particles/L. It was found that fibers and polyvinyl chloride (PVC) exhibit the most adverse effects among the MPs' shapes and types assessed. Among size fractions, 100-1000 μm exhibited higher toxicity to Tai Lake biota compared to 1-10 and 10-100 μm. The ecological risk assessment suggested that the likelihood of ecological risk from MPs in Tai Lake is higher for fibers and PVC. Notably, fish species were identified as the most sensitive species in Tai Lake compared to crustaceans and mollusks. This research leads to a better insight into the physical characteristics and toxicity endpoints of MPs in determining their toxicity for estimating SSDs in aquatic environments. Moreover, it highlights the importance of implementing effective management strategies to address the negative impacts of MPs in Tai Lake.
Collapse
Affiliation(s)
- Seerat Ul Ain Bhutto
- School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin, 300350, China
| | - Muhammad Akram
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xue-Yi You
- School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
3
|
Hossain S, Shukri ZNA, Waiho K, Ibrahim YS, Kamaruzzan AS, Rahim AIA, Draman AS, Wahab W, Khatoon H, Kasan NA. Biodegradation of polyethylene (PE), polypropylene (PP), and polystyrene (PS) microplastics by floc-forming bacteria, Bacillus cereus strain SHBF2, isolated from a commercial aquafarm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32225-32245. [PMID: 38644425 DOI: 10.1007/s11356-024-33337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
The ubiquitous proximity of the commonly used microplastic (MP) particles particularly polyethylene (PE), polypropylene (PP), and polystyrene (PS) poses a serious threat to the environment and human health globally. Biological treatment as an environment-friendly approach to counter MP pollution has recent interest when the bio-agent has beneficial functions in their ecosystem. This study aimed to utilize beneficial floc-forming bacteria Bacillus cereus SHBF2 isolated from an aquaculture farm in reducing the MP particles (PE, PP, and PS) from their environment. The bacteria were inoculated for 60 days in a medium containing MP particle as a sole carbon source. On different days of incubation (DOI), the bacterial growth analysis was monitored and the MP particles were harvested to examine their weight loss, surface changes, and alterations in chemical properties. After 60 DOI, the highest weight loss was recorded for PE, 6.87 ± 0.92%, which was further evaluated to daily reduction rate (k), 0.00118 day-1, and half-life (t1/2), 605.08 ± 138.52 days. The OD value (1.74 ± 0.008 Abs.) indicated the higher efficiency of bacteria for PP utilization, and so for the colony formation per define volume (1.04 × 1011 CFU/mL). Biofilm formation, erosions, cracks, and fragments were evident during the observation of the tested MPs using the scanning electron microscope (SEM). The formation of carbonyl and alcohol group due to the oxidation and hydrolysis by SHBF2 strain were confirmed using the Fourier transform infrared spectroscopic (FTIR) analysis. Additionally, the alterations of pH and CO2 evolution from each of the MP type ensures the bacterial activity and mineralization of the MP particles. The findings of this study have confirmed and indicated a higher degree of biodegradation for all of the selected MP particles. B. cereus SHBF2, the floc-forming bacteria used in aquaculture, has demonstrated a great potential for use as an efficient MP-degrading bacterium in the biofloc farming system in the near future to guarantee a sustainable green aquaculture production.
Collapse
Affiliation(s)
- Shahadat Hossain
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Zuhayra Nasrin Ahmad Shukri
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yusof Shuaib Ibrahim
- Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Amyra Suryatie Kamaruzzan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Ideris Abdul Rahim
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Shuhaimi Draman
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wahidah Wahab
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Helena Khatoon
- Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Nor Azman Kasan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
4
|
Meng L, Sun X, Li Q, Zheng S, Liang J, Zhao C. Quantification of the vertical transport of microplastics by biodeposition of typical mariculture filter-feeding organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168226. [PMID: 37923264 DOI: 10.1016/j.scitotenv.2023.168226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The tremendous loss of microplastics from the sea surface and the low density of microplastics found in the water column and sediments indicate that the oceans have mechanisms capable of transporting microplastics from the surface to the seafloor. These include physicochemical processes and biological influences from marine organisms that drive the vertical migration of microplastics. Little is known, however, about the biological processes involved in the deposition of plastics in the marine environment. A considerable number of mariculture filter-feeding organisms can consume substantial amounts of suspended substances in the water column, and these organisms are ideal candidates for depositing microplastics. In this study, we analyzed microplastic abundance in typical mariculture filter feeders, i.e., ascidians (Halocynthia roretzi), oysters (Crassostrea gigas), scallops (Chlamys farreri) and clams (Ruditapes philippinarum), quantified the number and characteristics of the microplastics they deposited in situ, and further compared microplastic biodeposition rates. Microplastics were present in feces and pseudofeces and sank to form biodeposits rather than accumulating to significant levels in organisms. Microplastics were found in significantly higher numbers in the biodeposits of mariculture organisms than in the control deposits (p < 0.01). The shape and color of the microplastics in the sediments were not impacted by the presence of organisms (p > 0.05), but the deposition of <1000 μm and positive-buoyancy (less dense than seawater) microplastics was significantly increased in the biodeposits (p < 0.05). The highest microplastic biodeposition rate was found in scallops (1.14 ± 0.07 items·ind-1·d-1 or 0.5 ± 0.03 items·g-1·d-1). These results suggest that mariculture filter-feeding organisms have important biodepositional functions that influence the fate of microplastics through the transfer of microplastics from the surface to the seafloor. This study could contribute to a better understanding of the biological plastic pump mechanisms in oceans.
Collapse
Affiliation(s)
- Liujiang Meng
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Sun
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qingjie Li
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shan Zheng
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Junhua Liang
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chenhao Zhao
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|