1
|
Lourenço SC, Aleluia AAMRA, Barboza LGA, Otero XL, Cunha SC, Fernandes JO, Guilhermino L. Microplastic contamination and biological alterations in Atlantic wild fish populations, and human health risks associated to fillet consumption. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107139. [PMID: 40253821 DOI: 10.1016/j.marenvres.2025.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
This study tested the hypothesis that long-term exposure to microplastics (MPs) is causing biological alterations in North Atlantic wild populations of Trisopterus luscus (pouting) and Merluccius merluccius (hake). It also estimated the human risk of MP intake (HRI) through fillet consumption, and combined the HRI and polymer health hazard in the Risk of Intake and Polymer Hazard Index (RIPHI). Fish (103) were analysed for MPs (gastrointestinal tract, gills, liver, brain, muscle), biomarkers (physical condition, neurotoxicity, energy production, oxidative stress and damage) and general stress (Integrated Biomarker Response - IBR). After particle analysis (Fourier Transform Infrared spectroscopy, Raman spectroscopy) and data correction for contamination, MPs accounted for 77 % of 311 particles. From 103 fish, 79 % contained MPs. The overall mean concentration ±SD was 0.09 ± 0.09 MP g-1 (2.32 ± 2.35 MPs ind-1) with no significant interspecific differences (p > 0.05). Among body sites, brain had the highest MP concentration (pouting: 0.6 MP g-1; hake: 0.5 MP g-1). Most abundant polymers were polyethylene (40 %), polypropylene (21 %) and polymethyl methacrylate (12 %). Fragments (<150 μm) predominated. MP profiles pointed to prey-predator transfer. Fish with MPs had higher stress levels (IBR, pouting: 0.317; hake: 0.200) than specimens without MPs (pouting: 0.0; hake: 0.062). Oxidative stress was the effect most clearly linked to MPs. Hake fillet poses lower HRI (e.g., 0.2 to 1.5 MPs day-1) than pouting fillet (e.g., 0.4 to 3.0 MPs day-1). RIPHI values showed the opposite trend (e.g., hake: 138 to 1038; pouting: 113 to 845), indicating medium to high risk to human consumers. Findings related long-term MPs exposure in the natural habitat with biological alterations in wild fish populations, highlight the importance of food diversification for a healthy alimentation, and stress the urgent need of reducing MPs pollution to promote ecosystem sustainability and global health.
Collapse
Affiliation(s)
- Sara C Lourenço
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| | - Alexandre A M R A Aleluia
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| | - L Gabriel A Barboza
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| | - Xosé L Otero
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, 15782, Spain.
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Lúcia Guilhermino
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
2
|
Edbauer F, Ludwig HC, Moritz MJ, Nau R, Seele J. Micro- and nanoplastics reduce the phagocytosis and intracellular killing of E. coli by THP1-Blue™ NFκB monocytes. Infection 2025:10.1007/s15010-025-02565-1. [PMID: 40418275 DOI: 10.1007/s15010-025-02565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
PURPOSE Micro- and nanoplastic particles occur ubiquitously in the environment and have been detected in various organs in animals and humans. We studied, how micro- and nanoplastic influence phagocytosis and intracellular killing of live bacteria in human monocytes. METHODS Cells of the human reporter cell line THP1-Blue™ NFκB were pre-treated with different concentrations of micro- and nanoplastic (diameter 1 μm and 100 nm) and then incubated with Escherichia coli DH5α. Phagocytosis and intracellular killing was studied using an antibiotic protection assay. The activation of the NFκB promoter was quantified by measuring the production of alkaline phosphatase. Cytokines were measured by enzyme immunoassay. Cell viability was determined by trypan blue staining and lactate dehydrogenase measurement. Electron microscopic images were taken to localize micro- and nanoplastic. RESULTS Micro- and nanoplastic particles were rapidly internalized by monocytes. They reduced phagocytosis of E. coli in a concentration- and time-dependent manner. Exposure to micro- and nanoplastic also reduced the intracellular killing of bacteria in a concentration-dependent manner. Plain plastic particles did not induce NFκB synthesis and IL1β and IL6 release. At concentrations inhibiting phagocytosis, micro- and nanoplastic was not cytotoxic. Endotoxin stimulated phagocytosis of bacteria. High concentrations of plastic particles reduced the stimulatory effect of endotoxin on phagocytosis of bacteria, but not the effect on NFκB synthesis. CONCLUSION Exposure to micro- and nanoplastic reduced the ability of phagocytes to internalize and kill bacteria. High plastic concentrations decreased the endotoxin-stimulated phagocytosis of bacteria. Hence, exposure to plastic particles may reduce the host`s immune defence against bacterial pathogens.
Collapse
Affiliation(s)
- Florian Edbauer
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Hans-Christoph Ludwig
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Marie Julia Moritz
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Roland Nau
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany.
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany.
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany, Robert-Koch-Strasse 40, 37075.
| | - Jana Seele
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| |
Collapse
|
3
|
Pinheiro M, Lopes C, Alves N, Almeida E, Morais H, Ribeiro M, Barros S, Raimundo J, Caetano M, Neuparth T, Santos MM. Microplastics in the deep: Suspended particles affect the model species Mytilus galloprovincialis under hyperbaric conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126195. [PMID: 40185189 DOI: 10.1016/j.envpol.2025.126195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Microplastics (MPs) are small plastic particles that result from the degradation of bigger fragments or introduced into the environment as primary particles. Their reduced size makes them available for ingestion by marine organisms, particularly in subtidal and deep-sea environments, which represent the largest sinks for MPs in the ocean. However, there is a lack of data regarding the effects of MPs in subtidal and deep-sea ecosystems. Thus, the present study aimed to assess the effects of MPs under hyperbaric conditions. Juvenile mussels, Mytilus galloprovincialis, were exposed to three concentrations of polyethylene MPs: 0.1, 1 and 10 mg/L, in a mixture of sizes (38-45, 75-90 and 180-212 μm), at different pressures: 1, 4 and 50 Bar, for 96 h. After exposure, the filtration rate, biochemical markers of oxidative stress and transcriptomic profile were analyzed to assess the effects of MPs. Results indicate that MPs affected functional endpoints, with a significant decrease in the filtration rate of mussels exposed to MPs at 1 mg/L and higher. Similarly, all tested oxidative stress biomarkers were affected in a treatment, concentration and pressure-dependent manner. RNA-seq analysis performed in organisms exposed to 1 mg/L of MPs at 4 Bar identified several affected signaling pathways (430 differentially expressed genes) including cellular senescence, the MAPK, RAS PI3K-Akt signaling pathways, apoptosis, among others. Overall, the results here presented corroborate the hypothesis that MPs affect exposed organisms under short-term hyperbaric conditions. These findings highlight the need to study MPs effects in subtidal and deep-sea taxa and address, in future studies, combined effects with other stressors such as contaminants that might be sorbed to the surface of the particles. These findings also indicate that improving hazard assessment of MPs under hyperbaric conditions is paramount to support risk assessment and the implementation of mitigation strategies.
Collapse
Affiliation(s)
- Marlene Pinheiro
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.
| | - Clara Lopes
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
| | - Nélson Alves
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Eunice Almeida
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Hugo Morais
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Marta Ribeiro
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Susana Barros
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Joana Raimundo
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
| | - Miguel Caetano
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
| | - Teresa Neuparth
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; FCUP - Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
4
|
Ho CM, Feng W, Li X, Ngien SK, Yu X, Song F, Yang F, Liao H. Microplastic distribution and its implications for human health through marine environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125427. [PMID: 40252426 DOI: 10.1016/j.jenvman.2025.125427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Microplastics are pervasive pollutants in the ocean, threatening ecosystems and human health through bioaccumulation and toxicological effects. This review synthesizes recent findings on microplastic distribution, trophic transfer, and human health impacts. Key findings indicate that microplastic abundance is highest in the Indian and Pacific Oceans, particularly in seawater and sediment. Morphologically, fibers and fragments dominate, with polypropylene, polyethylene, and polyester being the most prevalent polymers. Smaller particles (<1 mm) undergo long-range transport via ocean currents, while biofouling accelerates vertical sinking. Trophic transfer studies confirm microplastic ingestion across marine food webs. Human exposure is associated with seafood consumption, inhalation of airborne particles, and potential dermal contact, particularly in marine environments. These exposures can lead to adverse health effects, including inflammation, organ damage, respiratory issues, oxidative stress, and metabolic disruptions. Finally, this review explores potential strategies for minimizing human exposure to microplastic pollution in marine environments, paving the way for further research in this critical area.
Collapse
Affiliation(s)
- Chia Min Ho
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Weiying Feng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Xiaofeng Li
- China Hebei Construction and Geotechnical Investigation Group Ltd., Shijiazhuang, 050227, China
| | - Su Kong Ngien
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, 26300, Pahang, Malaysia
| | - Xuezheng Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
5
|
Dawson AL, Santana MFM, Perez M, Meehan K, McCarthy H, Vickers K, Motti CA. Rapid egestion of microplastics in juvenile barramundi: No evidence of gut retention or tissue translocation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125884. [PMID: 39984021 DOI: 10.1016/j.envpol.2025.125884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Despite many reports of large microplastics being isolated from fish muscle, there are limited exposure studies documenting the transport of microplastics >10 μm from the gastrointestinal tract (GIT) to surrounding tissues. Moreover, egestion rates of microplastics are not commonly studied, especially for carnivorous fish. In this study, experimental data and a literature meta-analysis were combined to understand microplastic translocation to fish tissue and egestion rates. Juvenile barramundi (Lates calcifer) were exposed through their diet to polyamide (PA) fibres and polyethylene terephthalate (PET) fibres and fragments (8-547 μm in length) to determine if shape, size, and polymer type influence microplastic translocation and egestion rates. Despite the high concentration (∼5000 microplastics g-1) and variable range of PET sizes and shapes used, their translocation from the GIT into other tissues was not observed, thus demonstrating PET fragments and fibres are unlikely to accumulate within barramundi. Moreover, more than 90% of all ingested PET microplastics were egested in less than 24 h, with only one small fragment persisting to 96 h post exposure. Elimination half-lives ranged from 9.2 to 12.2 h, with small PET fragments egested at a faster rate than the larger PET fragments and fibres but with no significant differences. Due to methodological challenges, PA fibres were unable to be quantified amongst the digesta. The meta-analysis of published fish egestion rates revealed that, when considering multiple fish, gut morphology (i.e., presence of a true stomach) rather than microplastic size and shape influenced egestion rates across species. The results presented here demonstrate no concrete evidence for GIT accumulation or translocation into tissue with rapid and efficient egestion of ingested microplastics by fish. These results suggest microplastics are not likely to bioaccumulate in barramundi and/or directly impact their associated food web.
Collapse
Affiliation(s)
- Amanda L Dawson
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia.
| | - Marina F M Santana
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| | - Michelle Perez
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| | - Kelley Meehan
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; School of the Environment, University of Queensland, St Lucia, QLD 4067, Australia
| | - Hannah McCarthy
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| | - Keegan Vickers
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
6
|
Martins A, Barboza LG, Vieira LR, Botelho MJ, Vale C, Guilhermino L. Relations between microplastic contamination and stress biomarkers under two seasonal conditions in wild carps, mullets and flounders. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106925. [PMID: 39823942 DOI: 10.1016/j.marenvres.2024.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Potential effects of microplastics (MP, plastic particles <5 mm) on the levels of multiple stress biomarkers were investigated in wild fish populations of Cyprinus carpio, Mugil cephalus, Platichthys flesus captured in the Minho River estuary located in the Iberian Peninsula. Specimens were collected in March and September 2018, corresponding to the end of winter and summer, respectively. Based on the concentration of MP determined by FT-IR analysis and morphological inspection, fishes from each species were divided into two groups: ≤0.1 MP g-1 and >0.1 MP g-1. Biomarkers (general condition, neurotoxicity, biotransformation, oxidative stress) and the Integrated Biomarker Response (IBR) indicating fish general stress were determined. Fishes with more than 0.1 MP g-1 showed elevated general stress (1.2- to 1.8-fold) relative to fish with ≤0.1 MP g-1. Founders captured in March were the exception. Mullets were the most susceptible fishes to MP contamination by exhibiting poor physical condition, neurotoxicity, oxidative stress or damage, and carps were the most resilient. Low temperature and less chlorophylls (a proxy of food availability) observed in March appear to enhance the biological effects of MP.
Collapse
Affiliation(s)
- Alexandra Martins
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - L Gabriel Barboza
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - Luis R Vieira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - Maria João Botelho
- CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal; IPMA - Portuguese Institute of Sea and Atmosphere, IP Division of Oceanography and Marine Environment (DIVOA), Av. Doutor Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal.
| | - Carlos Vale
- CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - Lúcia Guilhermino
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
7
|
Pratiwi HM, Takagi T, Rusni S, Inoue K. Osmoregulation affects elimination of microplastics in fish in freshwater and marine environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178293. [PMID: 39818487 DOI: 10.1016/j.scitotenv.2024.178293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025]
Abstract
In recent decades, microplastics (MPs) have emerged as one of the biggest environmental challenges in aquatic environments. Ingestion and toxicity of MPs in seawater (SW) and freshwater (FW) fish have been studied extensively both in field and laboratory settings. However, the basic mechanism of how fish deal with MPs in SW and FW remains unclear, although physiological conditions of fish differ significantly in the two environments. In this study, using Javanese medaka (Oryzias javanicus), a euryhaline fish that adapts readily to both SW and FW, we investigated elimination of MPs in fish in SW and FW environments. We exposed O. javanicus larvae (21 days post-hatching) to 0.25 mg/L of fluorescent polystyrene microspheres (1 μm) for 24 hours and then conducted an elimination test for up to 5 days. Results showed that the gut retention time of MPs is longer in FW than in SW, indicating that MP elimination occurs more quickly in SW than in FW. However, higher numbers of MPs tended to be retained longer in SW larvae than FW larvae. Subsequently, using a fluorescent marker, gastrointestinal fluid was found to move more rapidly in the SW group. This finding indicates that water drinking accelerates gastrointestinal fluid movement, which moves MPs through the gut in SW larvae. Beside the difference in physiological conditions, MP elimination was faster when food was available, suggesting that feeding also affects MP elimination in fish. Internal factors such as body size and intestine length were also examined, but indicated no significant difference. Therefore, osmoregulation and feeding both influence MP elimination in fish.
Collapse
Affiliation(s)
- Hilda Mardiana Pratiwi
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Chiba, Japan; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan.
| | - Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan
| | - Suhaila Rusni
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan
| | - Koji Inoue
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Chiba, Japan; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan
| |
Collapse
|
8
|
Pais-Costa AJ, Marques A, Oliveira H, Gonçalves A, Camacho C, Augusto HC, Nunes ML. New Perspectives on Canned Fish Quality and Safety on the Road to Sustainability. Foods 2025; 14:99. [PMID: 39796393 PMCID: PMC11719813 DOI: 10.3390/foods14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 01/13/2025] Open
Abstract
Canning extends the shelf life of seafood products while preserving their quality. It is increasingly considered a more sustainable food processing method due to the primary fishing methods used for key species and the lower energy costs compared to the production of fresh and frozen fish. However, canning can change key components, allow some contaminants to persist, and generate undesirable compounds. This review revisits the effects of canning on product quality and highlights the potential hazards that may compromise safety. It also examines emerging trends in product development, particularly novel formulations aimed at optimizing nutritional value while maintaining safety standards without compromising sustainability. Overall, the quality of most canned seafood meets industry requirements, for example, with improvements in processing strategies and strict safety protocols, leading to reduced histamine levels. However, data on marine biotoxins and microplastics in canned seafood remain limited, calling for more research and monitoring. Environmental contaminants, along with those generated during processing, are generally found to be within acceptable limits. Product recalls related to these contaminants in Europe are scarce, but continuous monitoring and regulatory enforcement remain essential. While new formulations of canned fish show promise, they require thorough evaluation to ensure both nutritional value and safety.
Collapse
Affiliation(s)
- Antónia Juliana Pais-Costa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
| | - António Marques
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA, I.P.), 1495-165 Algés, Portugal
| | - Helena Oliveira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA, I.P.), 1495-165 Algés, Portugal
| | - Amparo Gonçalves
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA, I.P.), 1495-165 Algés, Portugal
| | - Carolina Camacho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
| | - Helga Coelho Augusto
- Cofisa, S.A., Terrapleno do Porto de Pesca—Gala, 3090-735 Figueira da Foz, Portugal;
| | - Maria Leonor Nunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
| |
Collapse
|
9
|
Barboza LGA, Lourenço SC, Aleluia A, Senes GP, Otero XL, Guilhermino L. Are microplastics a new cardiac threat? A pilot study with wild fish from the North East Atlantic Ocean. ENVIRONMENTAL RESEARCH 2024; 261:119694. [PMID: 39068971 DOI: 10.1016/j.envres.2024.119694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Global environmental contamination by microplastics (MPs) is a growing problem with potential One Health impacts. The presence of MPs in vital organs, such as the heart, is of particular concern, but the knowledge is still limited. The goal of the present pilot study was to investigate the potential presence of MPs in the heart of wild specimens of three commercial fish species (Merluccius merluccius, Sardina pilchardus, and Trisopterus luscus) from the North East Atlantic Ocean. Heart samples from 154 fish were analysed for MP content (one heart sample per fish). A total of 44 MPs were recovered from heart samples from the three species. MPs had varied chemical composition (5 polymers), shapes (4) and colours (5). Differences in the profile of the MPs among species was observed (p ≤ 0.05). Thirty fish (19%) had MPs in their hearts, with a total mean (±SD) concentration of 0.286 ± 0.644 MPs/fish. S. pilchardus had the highest heart contamination (p ≤ 0.05). There were no significant (p > 0.05) differences between M. merluccius and T. luscus. These findings in fish with different biological and ecological traits together with literature data suggest that heart contamination likely is a disseminated phenomenon. Therefore, further research on the presence of MPs in the cardiovascular system and its potential health effects is very much needed.
Collapse
Affiliation(s)
- Luís Gabriel A Barboza
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sara Couto Lourenço
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alexandre Aleluia
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Giovanni Paolo Senes
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain
| | - Xosé L Otero
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain; REBUSC, Network of biological stations of the University of Santiago de Compostela, Marine Biology Station A Graña, Ferrol, Spain; RIAIDT, The Network of Infrastructures to Support Research and Technological Development of the University of Santiago de Compostela, Edificio Cactus, Campus Vida, Santiago de Compostela, 15782, Spain.
| | - Lúcia Guilhermino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
10
|
Lv L, Feng W, Cai J, Zhang Y, Jiang J, Liao D, Yan C, Sui Y, Dong X. Enrichment characteristics of microplastics in Antarctic benthic and pelagic fish and krill near the Antarctic Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175582. [PMID: 39159696 DOI: 10.1016/j.scitotenv.2024.175582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Global microplastic pollution has garnered widespread attention from researchers both domestically and internationally. However, compared to other regions worldwide, little is known about microplastic pollution in the marine ecosystems of the Antarctic region. This study investigated the abundance and characteristics of microplastics (MPs) in the gills and intestines of 15 species of Antarctic fish and Antarctic krill (Euphausia superba). The results indicate that the abundance of MPs in Antarctic fish and E. superba ranged from 0.625 to 2.0 items/individual and 0.17 to 0.27 items/individual, with mean abundances of 0.93 ± 0.96 items/individual and 0.23 ± 0.44 items/individual, respectively. Antarctic fish ingested significantly more MPs than E. superba. There was no significant difference in the abundance of MPs between the gills and intestines of Antarctic fish. However, the quantity of pellet-shaped MPs in the gills was significantly higher than in the intestines. The depth of fish habitat influenced the quantity and size of MPs in their bodies, with benthic fish ingesting significantly fewer MPs than pelagic fish. Pelagic fish ingested significantly more MPs sized 1-5 mm than benthic fish. Additionally, analysis of the characteristics of MPs revealed that fiber-shaped MPs were predominant in shape, with sizes generally smaller than 0.25 mm and 0.25-0.5 mm. The predominant colors of MPs were transparent, red, and black, while the main materials were polypropylene (PP), polystyrene (PS), polyamide (PA), and polyvinyl chloride (PVC). Compared to organisms from other regions, the levels of MPs in Antarctic fish and E. superba were relatively low. This study contributes to a better understanding of the extent of MP pollution in Antarctic fish and E. superba, aiding human efforts to mitigate its impact on the environment.
Collapse
Affiliation(s)
- Linlan Lv
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Wanjun Feng
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Jiaying Cai
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Yingying Zhang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Jiacheng Jiang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Dagui Liao
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Cong Yan
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Yanming Sui
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| | - Xuexing Dong
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224,000, PR China
| |
Collapse
|
11
|
Gao H, Yu R, Gong Y, Chen X, Li Y, Liu B, Gan Q. Diversity but not abundance of ingested plastics changes with ontogenetic dietary shift: Stable isotope insights into plastic contamination in a mesopelagic predator longnose lancetfish Alepisaurus ferox. MARINE POLLUTION BULLETIN 2024; 208:116910. [PMID: 39255673 DOI: 10.1016/j.marpolbul.2024.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
We employed Fourier infrared spectroscopy, laser infrared technology, and stable isotope analysis to investigate the relationships between characteristics of ingested plastics and size-related feeding ecology of a mesopelagic predator, longnose lancetfish Alepisaurus ferox. Plastics were detected in 81.48 % of specimens, up to 8.81 ± 8.29 items/individual and 0.59 ± 0.66 items/g wet weight of intestine, and were sized 20.00 μm to 6.50 cm. The majority were granules and fragments in shape, and polystyrene and acrylate copolymer in polymer type. The diversity indices exhibited a correlation with trophic position and body size groups, emphasizing that the ontogenetic dietary shift of A. ferox may influence the diversity of plastics ingested. This study provides new insights into the plastic pathways linking epipelagic and mesopelagic food webs and demonstrates that biochemical ecological tracers can effectively indicate the bioavailability of plastic correlated with growth in mesopelagic predator.
Collapse
Affiliation(s)
- Huachen Gao
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
| | - Ruoyang Yu
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
| | - Yi Gong
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China; National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China; Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Xinjun Chen
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China; National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China; Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yunkai Li
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China; National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China; Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Bilin Liu
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China; National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China; Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Qinyuan Gan
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
12
|
Gayathri V, Pavithra R, Thangal SH, Ganapathy S, Gurusaravanan P, Santhanam P, Radhakrishnan S, Muralisankar T. Incidence of microplastics in Indian anchovy Stolephorus indicus from Tuticorin, Southeast coast of India. MARINE POLLUTION BULLETIN 2024; 202:116406. [PMID: 38677108 DOI: 10.1016/j.marpolbul.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
In the present study, the occurrence of microplastics (MPs) in the gut, gill, and muscle of edible fish Stolephorus indicus sampled from Tuticorin coastal regions of Tamilnadu, India was investigated. We recorded a total of 689 MPs which includes 510 and 179 MPs from males and females respectively. The total abundance of MPs was significantly (P < 0.05) higher in the gut followed by gills and muscle. The sex-wise distribution of average MPs showed high in the females' gut and compared to that in males. Further, the length wise distribution of MPs was higher in the muscle in both male and female fish, followed by other organs. The predominance of MPs in tissues were transparent and blue colour with fibers and fragments in both males and females. Besides, polyethylene terephthalate and nylon were evidenced by the Fourier-transform infrared spectroscopy spectrum in all organs of fishes.
Collapse
Affiliation(s)
- Velusamy Gayathri
- Department of Zoology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Raj Pavithra
- Department of Zoology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Said Hamid Thangal
- Department of Zoology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Selvam Ganapathy
- Department of Zoology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | | | - Perumal Santhanam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, -620024, Tamilnadu, India
| | - Subramanian Radhakrishnan
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | | |
Collapse
|
13
|
Rivas-Mena G, Sánchez-Guerrero-Hernández MJ, Yeste MP, Ramos F, González-Ortegón E. Microplastics in the stomach content of the commercial fish species Scomber colias in the Gulf of Cadiz, SW Europe. MARINE POLLUTION BULLETIN 2024; 200:116049. [PMID: 38290360 DOI: 10.1016/j.marpolbul.2024.116049] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/01/2024]
Abstract
Concerning microplastics (MPs) contamination is increasing due their negative impacts on marine food webs and their potential toxicity to wildlife and humans. In this study, we analyze the presence of MPs in the stomachs of the commercial fish species Scomber colias (Atlantic chub mackerel) in the Gulf of Cadiz (GoC). Out of the 104 analyzed stomachs, 90.4 % contained some type of MPs, with an average of 5.4 MPs per individual. Of the 1152 MPs analyzed, 91.1 % were fibers, and 8.9 % fragments type. Fourier Transformation Infrared Spectrometry analysis was performed on 152 items, revealing that 73.6 % were MPs. The most common synthetic polymers found were polyamide (64 %), polypropylene (15 %), polystyrene (12 %), polyvinyl chloride (5 %), and polyethylene (4 %). The consistent ingestion of synthetic polymers by the individuals of Atlantic chub mackerel across different zones might suggest an even distribution of MP contamination throughout the GoC.
Collapse
Affiliation(s)
- Gabriel Rivas-Mena
- Institute of Marine Sciences of Andalusia, Spanish National Research Council (ICMAN-CSIC), Puerto Real, Spain
| | - Miguel Jorge Sánchez-Guerrero-Hernández
- Institute of Marine Sciences of Andalusia, Spanish National Research Council (ICMAN-CSIC), Puerto Real, Spain; Spanish Institute of Oceanography, C.O. de Cádiz (IEO-CSIC), 11006 Cadiz, Spain
| | - María Pilar Yeste
- Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Fernando Ramos
- Spanish Institute of Oceanography, C.O. de Cádiz (IEO-CSIC), 11006 Cadiz, Spain
| | - Enrique González-Ortegón
- Institute of Marine Sciences of Andalusia, Spanish National Research Council (ICMAN-CSIC), Puerto Real, Spain.
| |
Collapse
|
14
|
Sá S, Torres-Pereira A, Ferreira M, Monteiro SS, Fradoca R, Sequeira M, Vingada J, Eira C. Microplastics in Cetaceans Stranded on the Portuguese Coast. Animals (Basel) 2023; 13:3263. [PMID: 37893986 PMCID: PMC10603649 DOI: 10.3390/ani13203263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
This study characterises microplastics in small cetaceans on the coast of Portugal and assesses the relationship between several biological variables and the amount of detected microplastics. The intestines of 38 stranded dead cetaceans were processed in the laboratory, with digestion methods adapted to the amount of organic matter in each sample. The influence of several biological and health variables (e.g., species, sex, body condition) on the amount of microplastics was tested in all analysed species and particularly in common dolphins, due to the larger number of available samples. Most of the analysed individuals had microplastics in the intestine (92.11%), with harbour porpoises revealing a significantly higher median number of microplastics than common dolphins, probably due to their different diets, use of habitat and feeding strategies. None of the other tested variables significantly influenced the number of microplastics. Moreover, the microplastics found should not be enough to cause physical or chemical sublethal effects, although the correlation between microplastic ingestion and plastic additive bioaccumulation in cetacean tissues requires further investigation. Future monitoring in biota should rely on improved and standardised protocols for microplastic analyses in complex samples to allow for accurate analyses of larger samples and spatio-temporal comparisons.
Collapse
Affiliation(s)
- Sara Sá
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| | - Andreia Torres-Pereira
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| | - Marisa Ferreira
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal; (M.F.); (R.F.); (J.V.)
| | - Sílvia S. Monteiro
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| | - Raquel Fradoca
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal; (M.F.); (R.F.); (J.V.)
| | - Marina Sequeira
- Instituto da Conservação da Natureza e Florestas (ICNF), Av. da República 16, 1050-191 Lisboa, Portugal;
| | - José Vingada
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal; (M.F.); (R.F.); (J.V.)
| | - Catarina Eira
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| |
Collapse
|