1
|
Soares RRG, Varg JE, Szabó A, Kluge M, Petrini F, Psallida M, Olszewski P, Nikou DV, Owusu-Agyeman I, Perez-Zabaleta M, Cetecioglu Z, Naseem U, Malmberg M, Székely AJ. Hyperplex PCR enables highly multiplexed analysis of point mutations in wastewater: Long-term SARS-CoV-2 variant surveillance in Sweden as a case study. WATER RESEARCH 2025; 274:123154. [PMID: 39847906 DOI: 10.1016/j.watres.2025.123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
Wastewater-based surveillance (WBS) allows the analysis of pathogens, chemicals or other biomarkers in wastewater to derive unbiased epidemiological information at population scale. After re-gaining attention during the SARS-CoV-2 pandemic, the field holds promise as a surveillance and early warning system by tracking emerging pathogens with pandemic potential. Expanding the current toolbox of analytical techniques for wastewater analysis, we explored the use of Hyperplex PCR (hpPCR) to analyse SARS-CoV-2 mutations in wastewater samples collected weekly in up to 22 sites across Sweden between October 2022 and December 2023. The samples were tested using a probe panel ranging from 10- to 18-plex, continuously adapted within 1-2 weeks to quantify relevant mutations of concern over time. For cross-validation, the samples were simultaneously analysed with commonly used methods including quantitative PCR (qPCR) and next-generation sequencing (NGS). hpPCR is demonstrated herein to provide (1) systematic single nucleotide specificity with a straightforward probe design, (2) high multiplexity with minimal panel re-optimization requirements and (3) 4-5-week earlier mutation detection relative to NGS with comparable performance of mutation frequency quantification (Pearson r = 0.88, n = 50). Hence, hpPCR is shown to be a powerful complementary tool to the current workflow involving NGS and qPCR by facilitating the assembly of dynamic high-plex panels compatible with high-frequency monitoring of multiple key pathogens and/or variants in WBS.
Collapse
Affiliation(s)
| | - Javier Edo Varg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007, Uppsala, Sweden
| | - Attila Szabó
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007, Uppsala, Sweden; Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina str. 29., H- 1113 Budapest, Hungary
| | - Mariana Kluge
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007, Uppsala, Sweden
| | - Filip Petrini
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007, Uppsala, Sweden
| | | | | | | | - Isaac Owusu-Agyeman
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 21 Stockholm, Sweden
| | - Mariel Perez-Zabaleta
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 21 Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 21 Stockholm, Sweden
| | - Umear Naseem
- Aplex Bio AB, Nobels väg 16, 171 65, Solna, Sweden
| | - Maja Malmberg
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden
| | - Anna J Székely
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007, Uppsala, Sweden.
| |
Collapse
|
2
|
Xu X, Deng Y, Ding J, Tang Q, Lin Y, Zheng X, Zhang T. High-resolution and real-time wastewater viral surveillance by Nanopore sequencing. WATER RESEARCH 2024; 256:121623. [PMID: 38657304 DOI: 10.1016/j.watres.2024.121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Wastewater genomic sequencing stands as a pivotal complementary tool for viral surveillance in populations. While long-read Nanopore sequencing is a promising platform to provide real-time genomic data, concerns over the sequencing accuracy of the earlier Nanopore versions have somewhat restrained its widespread application in wastewater analysis. Here, we evaluate the latest improved version of Nanopore sequencing (R10.4.1), using SARS-CoV-2 as the model infectious virus, to demonstrate its effectiveness in wastewater viral monitoring. By comparing amplicon lengths of 400 bp and 1200 bp, we revealed that shorter PCR amplification is more suitable for wastewater samples due to viral genome fragmentation. Utilizing mock wastewater samples, we validated the reliability of Nanopore sequencing for variant identification by comparing it with Illumina sequencing results. The strength of Nanopore sequencing in generating real-time genomic data for providing early warning signals was also showcased, indicating that as little as 0.001 Gb of data can provide accurate results for variant prevalence. Our evaluation also identified optimal alteration frequency cutoffs (>50 %) for precise mutation profiling, achieving >99 % precision in detecting single nucleotide variants (SNVs) and insertions/deletions (indels). Monitoring two major wastewater treatment plants in Hong Kong from September 2022 to April 2023, covering over 4.5 million population, we observed a transition in dominant variants from BA.5 to XBB lineages, with XBB.1.5 being the most prevalent variants. Mutation detection also highlighted the potential of wastewater Nanopore sequencing in uncovering novel mutations and revealed links between signature mutations and specific variants. This study not only reveals the environmental implications of Nanopore sequencing in SARS-CoV-2 surveillance but also underscores its potential in broader applications including environmental health monitoring of other epidemic viruses, which could significantly enhance the field of wastewater-based epidemiology.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Qinling Tang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Yunqi Lin
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region; School of Public Health, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region.
| |
Collapse
|
3
|
Ding J, Xu X, Deng Y, Zheng X, Zhang T. Comparison of RT-ddPCR and RT-qPCR platforms for SARS-CoV-2 detection: Implications for future outbreaks of infectious diseases. ENVIRONMENT INTERNATIONAL 2024; 183:108438. [PMID: 38232505 DOI: 10.1016/j.envint.2024.108438] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
The increased frequency of human infectious disease outbreaks caused by RNA viruses worldwide in recent years calls for enhanced public health surveillance for better future preparedness. Wastewater-based epidemiology (WBE) is emerging as a valuable epidemiological tool for providing timely population-wide surveillance for disease prevention and response complementary to the current clinical surveillance system. Here, we compared the analytical performance and practical applications between predominant molecular detection methods of RT-qPCR and RT-ddPCR on SARS-CoV-2 detection in wastewater surveillance. When pure viral RNA was tested, RT-ddPCR exhibited superior quantification accuracy at higher concentration levels and achieved more sensitive detection with reduced variation at low concentration levels. Furthermore, RT-ddPCR consistently demonstrated more robust and accurate measurement either in the background of the wastewater matrix or with the presence of mismatches in the target regions of the consensus assay. Additionally, by detecting mock variant RNA samples, we found that RT-ddPCR outperformed RT-qPCR in virus genotyping by targeting specific loci with signature mutations in allele-specific (AS) assays, especially at low levels of allele frequencies and concentrations, which increased the possibility for sensitive low-prevalence variant detection in the population. Our study provides insights for detection method selection in the WBE applications for future infectious disease outbreaks.
Collapse
Affiliation(s)
- Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region.
| |
Collapse
|