1
|
Liustrovaite V, Drobysh M, Ratautaite V, Ramanaviciene A, Rimkute A, Simanavicius M, Dalgediene I, Kucinskaite-Kodze I, Plikusiene I, Chen CF, Viter R, Ramanavicius A. Electrochemical biosensor for the evaluation of monoclonal antibodies targeting the N protein of SARS-CoV-2 virus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171042. [PMID: 38369150 DOI: 10.1016/j.scitotenv.2024.171042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
The emergence of COVID-19 caused by the coronavirus SARS-CoV-2 has prompted a global pandemic that requires continuous research and monitoring. This study presents a design of an electrochemical biosensing platform suitable for the evaluation of monoclonal antibodies targeting the SARS-CoV-2 nucleocapsid (N) protein. Screen-printed carbon electrodes (SPCE) modified with gold nanostructures (AuNS) were applied to design a versatile and sensitive sensing platform. Electrochemical techniques, including electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV), were used to investigate the interactions between immobilised recombinant N (rN) protein and several monoclonal antibodies (mAbs). The electrochemical characterisation of SPCE/AuNS/rN demonstrated a successful immobilisation of rN, enhancing the electron transfer kinetics. Affinity interactions between immobilised rN and four mAbs (mAb-4B3, mAb-4G6, mAb-12B2, and mAb-1G5) were explored. Although mAb-4B3 showed some non-linearity, the other monoclonal antibodies exhibited specific and well-defined interactions followed by the formation of an immune complex. The biosensing platform demonstrated high sensitivity in the linear range (LR) from 0.2 nM to 1 nM with limits of detection (LOD) ranging from 0.012 nM to 0.016 nM for mAb-4G6, mAb-12B2, and mAb-1G5 and limits of quantification (LOQ) values ranging from 0.035 nM to 0.139 nM, as determined by both EIS and SWV methods. These results highlight the system's potential for precise and selective detection of monoclonal antibodies specific to the rN. This electrochemical biosensing platform provides a promising route for the sensitive and accurate detection of monoclonal antibodies specific to the rN protein.
Collapse
Affiliation(s)
- Viktorija Liustrovaite
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225 Vilnius, Lithuania; Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Maryia Drobysh
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Agne Rimkute
- Institute of Biotechnology, Life Sciences Center, Vilnius University (VU), Sauletekio Ave. 7, Vilnius, Lithuania
| | - Martynas Simanavicius
- Institute of Biotechnology, Life Sciences Center, Vilnius University (VU), Sauletekio Ave. 7, Vilnius, Lithuania
| | - Indre Dalgediene
- Institute of Biotechnology, Life Sciences Center, Vilnius University (VU), Sauletekio Ave. 7, Vilnius, Lithuania
| | - Indre Kucinskaite-Kodze
- Institute of Biotechnology, Life Sciences Center, Vilnius University (VU), Sauletekio Ave. 7, Vilnius, Lithuania
| | - Ieva Plikusiene
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan.
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Blvd., Riga, LV 1586, Latvia; Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine.
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, Vilnius, Lithuania.
| |
Collapse
|