1
|
Suljević D, Karlsson P, Fočak M, Brulić MM, Sulejmanović J, Šehović E, Särndahl E, Engwall M, Alijagic A. Microplastics and nanoplastics co-exposure modulates chromium bioaccumulation and physiological responses in rats. ENVIRONMENT INTERNATIONAL 2025; 198:109421. [PMID: 40168788 DOI: 10.1016/j.envint.2025.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
The environmental fragmentation of plastics generates a mixture of plastic particles of various sizes, which frequently co-occur with other mobile and persistent environmental pollutants. Despite the prevalence of such scenarios, the interaction between micro- and nanoplastics (MNPs) and their combined effects with environmental pollutants, such as highly toxic hexavalent chromium (Cr(VI)), remain almost entirely unexplored in mammalian species. This study demonstrated that nanoplastic and microplastic particles co-aggregate and together influence Cr bioaccumulation patterns and related physiological alterations in rats. Following a four-week repeated intragastric exposure of Wistar rats to MNPs and Cr(VI), either alone or in combination, MNPs significantly enhanced Cr bioaccumulation in the liver, heart, brain, and skin. Under co-exposure conditions, Cr(VI) was the primary driver of cellular effects observed in the blood, including shifts in immune cell subpopulations (e.g., neutrophils, lymphocytes) and alterations in red blood cell indices, while serum biochemistry reflected limited physiological stress. MNPs per se decreased creatine kinase activity and increased cholesterol levels. In summary, polystyrene MNPs increase Cr(VI) distribution and bioavailability, but co-exposure does not uniformly exacerbate toxicity. Instead, their interaction may selectively alter physiological responses, emphasizing the need for a deeper understanding of their combined effects and potential health risks.
Collapse
Affiliation(s)
- Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo 71 000 Sarajevo, Bosnia and Herzegovina
| | - Patrik Karlsson
- Department of Mechanical Engineering, Örebro University, Örebro SE-701 82, Sweden
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo 71 000 Sarajevo, Bosnia and Herzegovina
| | - Maja Mitrašinović Brulić
- Department of Biology, Faculty of Science, University of Sarajevo 71 000 Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo 71 000 Sarajevo, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo 71 000 Sarajevo, Bosnia and Herzegovina
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Andi Alijagic
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
2
|
Pedroza RHP, David C, Barriada JL, Rey-Castro C, Lodeiro P. The role of photooxidation and organic matter in Cr(III) and Cr(VI) interactions with poly(lactic acid) microplastics in aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178431. [PMID: 39818155 DOI: 10.1016/j.scitotenv.2025.178431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter. The results indicate that pristine PLA has a low affinity for Cr (between 0.05 and 46 μg/g) across varying pH levels, ionic strengths, and microplastic concentrations. However, the presence of organic matter (OM), represented by humic and tannic acids, resulted in 5.2-fold and 620-fold increases for Cr(III) and Cr(VI) adsorption, respectively. Possible mechanisms for that behavior are discussed, including Cr-OM complexation and formation of surface coatings. Noteworthy, we demonstrate that Cr(VI) adsorption involves a coupled redox-complexation process that appears to be related to the antioxidant potential of OM. Indeed, the ratio of (poly)phenol content of tannic and humic acids (6.23) is consistent with the ratio of Cr(VI) reduction in presence of both acids (6.97). Finally, photooxidation of PLA enhanced Cr(III) and Cr(VI) adsorption by a factor of 60 and 15, respectively. This is primarily attributed to UV-induced changes in surface chemical groups (increased oxygen content), rather than a change in surface area. This research provides key insights into the behavior of PLA as a potential Cr carrier, revealing the importance of organic matter and the photoaging of microplastics in the mobility of trace metal pollutants in the environment.
Collapse
Affiliation(s)
- Ricardo H P Pedroza
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Calin David
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - José L Barriada
- Department of Chemistry, University of A Coruña, Rúa da Fraga 10, 15071 A Coruña, Spain
| | - Carlos Rey-Castro
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain.
| | - Pablo Lodeiro
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
3
|
Sekar V, Sundaram B. Adsorption behavior of Cu(II) on UV-aged polyethylene terephthalate and polypropylene microplastics in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35923-5. [PMID: 39832097 DOI: 10.1007/s11356-025-35923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Plastics are widely used across various applications from packing to commercial products. Once discarded, they were subjected to environmental stresses, causing them to degrade into microplastics (MPs). These small, invisible pollutants pose a significant threat to aquatic ecosystems, gradually compromising the resilience and vitality of the natural environment. Moreover, MPs will act as carriers for other contaminants, for example, heavy metals (HMs). Although many studies have explored MPs and HMs independently, their combined behavior and interactions remain poorly understood. Understanding these interactions is increasingly important given rising pollution levels. MP formation and adsorption behavior are heavily influenced by factors such as UV aging, which remains unclear. In this study, both virgin and UV-aged MPs specifically PET and PP (the most widely used plastics globally) were examined in their interactions with copper (Cu2+) solutions. Surface analysis techniques such as FTIR, SEM, XRD, and AAS were employed to compare the virgin and UV-aged MPs. The results revealed that UV-aged MPs exhibited high adsorption capacities for HMs compared to virgin MPs, which can be attributed to increased pore volume and oxidative degradation. Adsorption capacity differences at various concentrations showed up to a 20% increase, with UV-aged PET MPs displaying capacities ranging from 0.6 to 3.54 mg/g. Similarly, UV-aged PP MPs showed a 15% increase in adsorption capacity ranging from 1.51 to 4.25 mg/g. The present study provided the significant evidence on the behavior of MPs adsorption and underscores the need for further research on the long-term environmental impacts of aged MPs and their interactions with pollutants.
Collapse
Affiliation(s)
- Vijaykumar Sekar
- Department of Civil Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, India
| | - Baranidharan Sundaram
- Department of Civil Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.
| |
Collapse
|
4
|
Chen J, Huo L, Yuan Y, Jiang Y, Wang H, Hui K, Li Y, Huang Z, Xi B. Interactions between microplastics and heavy metals in leachate: Implications for landfill stabilization process. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135830. [PMID: 39276746 DOI: 10.1016/j.jhazmat.2024.135830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The emission of microplastics and heavy metals in landfills has attracted widespread attention for its stabilization process. Microplastics have become carriers of heavy metals due to their adsorption properties, affecting their environmental behavior. However, the effects of landfill stabilization on the interaction between microplastics and heavy metals in leachate are ambiguous. This work explored the abundance characteristics of microplastics and heavy metals in leachate from 10 landfills in Beijing. Overall, the average abundance of microplastics was 196.3 items/L, dominated by small particle size (20-50 µm) and film microplastics. The levels of Cr and As were much higher than other heavy metals. The average abundance of microplastics and polymer types tended to decrease as the landfill stabilization proceeded, and the surface composition of microplastics became more complex. Statistical analysis revealed that the correlations between microplastics and heavy metals in the leachate of landfill stabilization presented significant parabolic characteristics, and Cr and As were more susceptible to landfill stabilization with significant positive correlation with a wide range of microplastics such as 20-30 µm. These results were intended to provide a scientific basis for the treatment and disposal of waste leachate and the synergistic prevention and control of new and traditional pollutants.
Collapse
Affiliation(s)
- Jiabao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Lin Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanjiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zekai Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
5
|
Men C, Xie Z, Li K, Xing X, Li Z, Zuo J. Single and combined effect of polyethylene microplastics (virgin and naturally aged) and cadmium on pakchoi (Brassica rapa subsp. chinensis) under different growth stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175602. [PMID: 39155006 DOI: 10.1016/j.scitotenv.2024.175602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
To protect agro-systems and food security, study on the effect of microplastics and heavy metals on edible plants is of great significance. Existing studies mostly used virgin microplastics to evaluate their effects on plants, effects of naturally aged microplastics and their combined effects with heavy metals are rarely explored. In this study, single and combined effect of polyethylene microplastics (PE, both virgin and naturally aged) and cadmium (Cd) on pakchoi under seedling and mature stages were analyzed from perspectives of growth inhibition, oxidative damage, nutrition content and soil enzyme activities. Results showed that inhibiting effects of naturally aged PE (PEa) on the growth of pakchoi were stronger than virgin PE (PEv), whereas co-contamination of PEa and Cd was less toxic than that of PEv and Cd. The co-contamination of PE and Cd could inhibit pakchoi dry biomass by over 85 %. Both single and combined contamination of PE and Cd promoted soil fluorescein diacetate hydrolase (FDA) activities, which were 1.11 to 2.04 times of that in control group. Soluble sugar contents under co-contamination of PEa and Cd were 14 % to 22 % higher than those in control group. PEa and PEv showed different effects on oxidative damage of pakchoi. Compared with PEv, catalase (CAT) activities were more sensitive with PEa, whereas PEa had lower effect on superoxide dismutase (SOD) activities. The response of pakchoi to PE and Cd changed with growth stage. Chlorophyll contents in pakchoi under seedling stage were generally higher than those under mature stage. For Cd contaminated soils, PE benefited pakchoi growth under seedling stage, i.e. antagonistic effect between Cd and PE but hindered their growth under mature stage, i.e. synergistic effect. The results unraveled here emphasized PE, especially PEa, could trigger negative effects on agro-systems, whereas PE could be beneficial for heavy metal contaminated agro-systems under specific situations.
Collapse
Affiliation(s)
- Cong Men
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenwen Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Chengdu Drainage Co., Ltd, Chengdu 610011, China
| | - Kaihe Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Xing
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
6
|
Wang Q, Ge W, Shi R, He J, Li S, Zhu C, Zhang X, Shi M, Ni N, Wang N. Adsorption behavior and mechanism of different types of (aged) microplastics for napropamide in soils. CHEMOSPHERE 2024; 364:143211. [PMID: 39214413 DOI: 10.1016/j.chemosphere.2024.143211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The role of microplastics (MPs) as pollutant carriers and their influence on the fate of organic pollutants has received considerable attention. However, the impacts of MPs on the adsorption of amide herbicides in soil, have not been investigated. In this study, non-biodegradable (polyethylene, PEM) and biodegradable (polybutylene adipate terephthalate, PBATM) MPs were aged by exposure to one month of ultraviolet irradiation. The impacts of MPs on the adsorption of napropamide (Nap) in two agricultural soils (black soil [BS] and fluvo-aquic soil [CS]) were investigated through batch experiments. The findings suggested that the adsorption of Nap onto PEM was mainly governed by physical processes, while, chemical mechanisms, should not be overlooked on PBATM. With the addition of 0.2% MPs, the maximum adsorption capacity (Qm) and adsorption distribution coefficient (KF) of soil containing PEM (soil-PEM) were higher than that of soil-PBATM, however, the Qm and KF values of soil-PBATM for Nap were higher when the addition of MPs was 2%. After UV aging, the increased specific surface area of MPs led to an increased adhesion of soil particles. These were attributed to the different surface properties and concentrations of different (aged) MPs, resulting in differences in the inhibition effect by soil particles. The adhesion of soil particles was confirmed by X-ray photoelectron spectroscopy. Additionally, regardless of the addition of MPs, the Qm values of BS for Nap were higher than those for CS. In summary, MPs can alter the adsorption of Nap in soil, influencing both its mobility within the soil ecosystem and the environmental risk.
Collapse
Affiliation(s)
- Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China
| | - Wenjie Ge
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China; Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Renyong Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, 210008, China
| | - Jian He
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Shuchang Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China; Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Changqing Zhu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xiaohui Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Mali Shi
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ni Ni
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Na Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
7
|
Sudarsan JS, Dogra K, Kumar R, Raval NP, Leifels M, Mukherjee S, Trivedi MH, Jain MS, Zang J, Barceló D, Mahlknecht J, Kumar M. Tricks and tracks of prevalence, occurrences, treatment technologies, and challenges of mixtures of emerging contaminants in the environment: With special emphasis on microplastic. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104389. [PMID: 38941876 DOI: 10.1016/j.jconhyd.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
This paper aims to emphasize the occurrence of various emerging contaminant (EC) mixtures in natural ecosystems and highlights the primary concern arising from the unregulated release into soil and water, along with their impacts on human health. Emerging contaminant mixtures, including pharmaceuticals, personal care products, dioxins, polychlorinated biphenyls, pesticides, antibiotics, biocides, surfactants, phthalates, enteric viruses, and microplastics (MPs), are considered toxic contaminants with grave implications. MPs play a crucial role in transporting pollutants to aquatic and terrestrial ecosystems as they interact with the various components of the soil and water environments. This review summarizes that major emerging contaminants (ECs), like trimethoprim, diclofenac, sulfamethoxazole, and 17α-Ethinylestradiol, pose serious threats to public health and contribute to antimicrobial resistance. In addressing human health concerns and remediation techniques, this review critically evaluates conventional methods for removing ECs from complex matrices. The diverse physiochemical properties of surrounding environments facilitate the partitioning of ECs into sediments and other organic phases, resulting in carcinogenic, teratogenic, and estrogenic effects through active catalytic interactions and mechanisms mediated by aryl hydrocarbon receptors. The proactive toxicity of ECs mixture complexation and, in part, the yet-to-be-identified environmental mixtures of ECs represent a blind spot in current literature, necessitating conceptual frameworks for assessing the toxicity and risks with individual components and mixtures. Lastly, this review concludes with an in-depth exploration of future scopes, knowledge gaps, and challenges, emphasizing the need for a concerted effort in managing ECs and other organic pollutants.
Collapse
Affiliation(s)
- Jayaraman Sethuraman Sudarsan
- School of Energy and Environment, NICMAR (National Institute of Construction Management and Research) University, Pune 411045, India
| | - Kanika Dogra
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Nirav P Raval
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh 522 240, India
| | - Mats Leifels
- Division Water Quality and Health, Karl Landsteiner University for Health Sciences, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems an der Donau, Austria
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Mrugesh H Trivedi
- Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj-Kachchh, Gujarat 370001, India
| | - Mayur Shirish Jain
- Department of Civil Engineering, Indian Institute of Technology Indore, Simrol, 453552, India
| | - Jian Zang
- School of Civil Engineering, Chongqing University, Chongqing, China
| | - Damià Barceló
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120, Almería, Spain
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico
| | - Manish Kumar
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico.
| |
Collapse
|
8
|
Guo Q, Wang M, Jin S, Ni H, Wang S, Chen J, Zhao W, Fang Z, Li Z, Liu H. Photoaged microplastics enhanced the antibiotic resistance dissemination in WWTPs by altering the adsorption behavior of antibiotic resistance plasmids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170824. [PMID: 38340861 DOI: 10.1016/j.scitotenv.2024.170824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Growing concerns have raised about the microplastic eco-coronas in the ultraviolet (UV) disinfection wastewater, which accelerated the pollution of antibiotic resistance genes (ARGs) in the aquatic environment. As the hotspot of gene exchange, microplastics (MPs), especially for the UV-aged MPs, could alter the spread of ARGs in the eco-coronas and affect the resistance of the environment through adsorbing antibiotic resistant plasmids (ARPs). However, the relationship between the MP adsorption for ARPs and ARG spreading characteristics in MP eco-corona remain unclear. Herein, this study explored the distribution of ARGs in the MP eco-corona through in situ investigations of the discharged wastewater, and the adsorption behaviors of MPs for ARPs by in vitro adsorption experiments and in silico calculations. Results showed that the adsorption capacity of MPs for ARPs was enhanced by 42.7-48.0 % and the adsorption behavior changed from monolayer to multilayer adsorption after UV-aging. It was related to the increased surface roughness and oxygen-containing functional groups of MPs under UV treatment. Moreover, the abundance of ARGs in MP eco-corona of UV-treated wastewater was 1.33-1.55 folds higher than that without UV treatment, promoting the proliferation of drug resistance. DFT and DLVO theoretical calculations indicated that the MP-ARP interactions were dominated by electrostatic physical adsorption, endowing the aged MPs with low potential oxygen-containing groups to increase the electrostatic interaction with ARPs. Besides, due to the desorption of ARPs on MPs driven by the electrostatic repulsion, the bioavailability of ARGs in the MP eco-coronas was increased with pH and decreased with salinity after the wastewater discharge. Overall, this study advanced the understanding of the adsorption behavior of MPs for ARPs and provided inspirations for the evaluation of the resistance spread in the aquatic environment mediated by MP eco-coronas.
Collapse
Affiliation(s)
- Qian Guo
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Mengjun Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Siyuan Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Haohua Ni
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Shuping Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|