1
|
Wang Q, Hou J, Peng L, Liu W, Luo Y. Dynamic responses in bioaugmentation of petroleum-contaminated soils using thermophilic degrading consortium HT: Hydrocarbons, microbial communities, and functional genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137222. [PMID: 39826458 DOI: 10.1016/j.jhazmat.2025.137222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Bioaugmentation offers an effective strategy for the bioremediation of petroleum-contaminated soils. However, little is known about petroleum hydrocarbons (PHs) degradation with thermophilic consortium application under high temperature. A microcosm was established to study hydrocarbons degradation, microbial communities and functional genes response using a thermophilic petroleum-degrading consortium HT. The results showed that the consortium HT significantly enhanced PHs degradation, particularly for medium (C16-C21) (87.1 %) and long-chain alkanes (C21-C40) (67.2 %) within 140 days under high temperature. Colonization of HT in the soil exhibited lagged characteristics, with a substantial increase in bacterial genera originated from the HT after 60 days. Additionally, LEfSe analysis indicated that the biomarkers of HT treatment were mainly from the HT consortium. Moreover, functional analysis revealed genes related to n-alkane degradation (AlkB, P450, LadA), alkane utilization regulator (AraC, TetR, GntR), as well as several thermotolerance genes were significantly increased in HT treatment. Additionally, network analysis demonstrated distinct co-occurrence patterns induced by nutrient addition and exogenous consortium, with the latter strengthening interactions and stability of bacterial networks under high temperature. This study represents pioneering investigation into the effects of exogenous thermophilic consortium on petroleum degradation, bacterial communities, functional genes and ecological interactions in application of petroleum remediation under thermophilic conditions.
Collapse
Affiliation(s)
- Qingling Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyu Hou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Li Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Wuxing Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| |
Collapse
|
2
|
Shu A, Yang Z, Cui Q, Liu Z, Liu S, Zhang M, Sun H, Shang J, Tian H, Xiao Y, Tan W. Spatial variations and vertical migration potentials of petroleum hydrocarbons with varying chain lengths in soils of different depths: Roles of solid and dissolved organic matters and soil texture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176984. [PMID: 39427897 DOI: 10.1016/j.scitotenv.2024.176984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Petroleum hydrocarbons (PHs) in contaminated sites may threaten human health and ecological safety, while the environmental behaviors of PHs with varying carbon chains and critical influencing factors need to be elucidated, thus facilitating efficient risk management. This study explored the occurrence characteristics and spatial variations of different PHs at the depths of 0-10 m in an abandoned industrial site, as well as evaluated the effects of solid organic matter (SOM), dissolved organic matter (DOM), and soil texture on the migration potentials of PHs with varying carbon chains. Furthermore, the leaching potentials of different PHs were integrated into their risk assessment. The total concentrations of PHs in contaminated soils ranged from 22.7 to 397 mg/kg in contaminated soils, and the long-chained PHs (C22-C40) represented the major components with an average contribution of 46.9 %, followed by short-chained PHs (C10-C12, 32.0 % average) and medium-chained PHs (C13-C21, 21.1 % average). As soil depth increased, a declining trend was observed in the proportions of long-chain PHs, with an augmentation in the relative abundance of short-chain PHs. The random forest model coupling redundancy analysis showed that SOM was the major contributor to the occurrence and vertical attenuation of PHs with longer carbon chains in underground soils, with clay component exerting a greater additional effect than silt and sand components. While DOM in soils exhibited a relatively high contribution to the retention of PHs with short carbon chains. These results demonstrated the significant influence of SOM and clay on the behavior of long-chained PHs and DOM on that of short-chained ones. Besides direct human exposure, the leaching potentials of PHs, particularly short-chained ones, in soils should be considered for a more comprehensive risk assessment. The findings of this study may assist with the behavior modelling and prediction of different PHs as well as the corresponding risk control.
Collapse
Affiliation(s)
- Aiai Shu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shun Liu
- The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
| | - Mancheng Zhang
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Heyang Sun
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaqi Shang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Huirui Tian
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuting Xiao
- Department of Geology & Geophysics, Texas A&M University, College Station, TX 77840, USA
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Xu M, He R, Cui G, Wei J, Li X, Xie Y, Shi P. Quantitative tracing the sources and human risk assessment of complex soil pollution in an industrial park. ENVIRONMENTAL RESEARCH 2024; 257:119185. [PMID: 38810828 DOI: 10.1016/j.envres.2024.119185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/30/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Pollution in industrial parks has long been characterized by complex pollution sources and difficulties in identifying pollutant origins. This study focuses on a typical industrial park consisting of 11 factories (F1-F11) including organic pigment, inorganic pigment, and chemical factories in Hunan Province, China, here, a total of 327 sample points were surveyed. Eight pollutants (Mn, Cd, As, Co, NH3-N, l, 1,2-Trichloroethane, chlorobenzene, and petroleum hydrocarbons) were classified as contaminants of concern (COCs). This study assessed the contributions of driving factors to the distribution of COCs in the soil. Pollutant source apportionment was conducted using positive matrix factorization (PMF) and random forest (RF). The results revealed that the main factors driving pollution are groundwater migration, non-compliant emissions, leaks during production, and interactions among pollutants. The primary pollution sources were four chemical factories and an inorganic pigment factory. Source 5 demonstrates significant correlations with TCA (29.6%), CB (30%), and As (31.6%). Two chemical factories (F7 and F10) are the most significant pollution source with a risk assessment contribution rate of more than 60%. The present study sheds some light on the contamination characteristics, source apportionment and source-health risk assessment of COCs in industrial park. By utilizing the proposed research framework, decision-makers can effectively prioritize and address identified pollution sources.
Collapse
Affiliation(s)
- Minke Xu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Ruicheng He
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Guannan Cui
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Jinjin Wei
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xin Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yunfeng Xie
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Peili Shi
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| |
Collapse
|
4
|
Gan S, Ning Z, Wang S, Sun W, Xu Z, Di H, Ti J, Guo C, Zhou Y, He Z, Kong S, Zhang M. Identification of carbon fixation microorganisms and pathways in an aquifer contaminated with long-chain petroleum hydrocarbons. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11078. [PMID: 39087861 DOI: 10.1002/wer.11078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
Petroleum hydrocarbons (PHCs) can be biodegraded into CO2, and PHC-contaminated aquifers are always deemed as carbon sources. Fortunately, some carbon fixation microorganisms have been found in PHC-contaminated sites. However, most of the studies are related to volatile short-chain PHC, and few studies focus on long-chain PHC-contaminated sites. To reveal the carbon fixation microorganisms in these sites, in the study, a long-chain PHC polluted site in North China was selected. Through hydrochemical and metagenomics analysis, the structure and capacity of carbon fixing microorganisms in the site were revealed. Results showed that there were many kinds of carbon fixed microorganisms that were identified such as Flavobacterium, Pseudomonas. HP/4HB, rTCA, and DC/4HB cycles were dominated carbon fixation pathways. The long-chain PHC were weakly correlated with carbon fixation microorganisms, but it may stimulate the growth of some carbon fixation microorganisms, such as microorganisms involved in rTCA cycle. PRACTITIONER POINTS: The microorganisms with carbon fixation gene exist in the aquifer contaminated by long-chain petroleum hydrocarbon. Microorganisms that have the ability to degrade petroleum also have the ability to carbon fixation. Long-chain petroleum hydrocarbon may promote the growth of carbon fixation microorganisms.
Collapse
Affiliation(s)
- Shuang Gan
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
- Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Zhengding, China
| | - Zhuo Ning
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Zhengding, China
| | - Shuaiwei Wang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Zhengding, China
| | - Weichao Sun
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Zhengding, China
| | - Zhe Xu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Zhengding, China
| | - He Di
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Zhengding, China
| | - Jinjin Ti
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Zhengding, China
| | - Caijuan Guo
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
| | - Yahong Zhou
- School of water resources and environment, Hebei GEO University, Shijiazhuang, China
| | - Ze He
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Zhengding, China
| | - Siyu Kong
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
- Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Zhengding, China
| | - Min Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Zhengding, China
| |
Collapse
|
5
|
Wu X, Gao R, Tian X, Hou J, Wang Y, Wang Q, Tang DKH, Yao Y, Zhang X, Wang B, Yang G, Li H, Li R. Co-composting of dewatered sludge and wheat straw with newly isolated Xenophilus azovorans: Carbon dynamics, humification, and driving pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121613. [PMID: 38944964 DOI: 10.1016/j.jenvman.2024.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Composting is a biological reaction caused by microorganisms. Composting efficiency can be adequately increased by adding biochar and/or by inoculating with exogenous microorganisms. In this study, we looked at four methods for dewatered sludge waste (DSW) and wheat straw (WS) aerobic co-composting: T1 (no additive), T2 (5% biochar), T3 (5% of a newly isolated strain, Xenophilus azovorans (XPA)), and T4 (5% of biochar-immobilized XPA (BCI-XPA)). Throughout the course of the 42-day composting period, we looked into the carbon dynamics, humification, microbial community succession, and modifications to the driving pathways. Compared to T1 and T2, the addition of XPA (T3) and BCI-XPA (T4) extended the thermophilic phase of composting without negatively affecting compost maturation. Notably, T4 exhibited a higher seed germination index (132.14%). Different from T1 and T2 treatments, T3 and T4 treatments increased CO2 and CH4 emissions in the composting process, in which the cumulative CO2 emissions increased by 18.61-47.16%, and T3 and T4 treatments also promoted the formation of humic acid. Moreover, T4 treatment with BCI-XPA addition showed relatively higher activities of urease, polyphenol oxidase, and laccase, as well as a higher diversity of microorganisms compared to other processes. The Functional Annotation of Prokaryotic Taxa (FAPROTAX) analysis showed that microorganisms involved in the carbon cycle dominated the entire composting process in all treatments, with chemoheterotrophy and aerobic chemoheterotrophy being the main pathways of organic materials degradation. Moreover, the presence of XPA accelerated the breakdown of organic materials by catabolism of aromatic compounds and intracellular parasite pathways. On the other hand, the xylanolysis pathway was aided in the conversion of organic materials to dissolved organics by the addition of BCI-XPA. These findings indicate that XPA and BCI-XPA have potential as additives to improve the efficiency of dewatered sludge and wheat straw co-composting.
Collapse
Affiliation(s)
- Xuan Wu
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Runyu Gao
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Xiaorui Tian
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Jiawei Hou
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Yang Wang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Daniel Kuok Ho Tang
- The University of Arizona (UA), The Department of Environmental Science, Tucson, AZ, 85721, USA; School of Natural Resources and Environment, NWAFU-UA Micro-campus, Yangling, 712100, China
| | - Yiqing Yao
- School of Mechanical & Electronic Engineering, Northwest A&F University, Yangling, 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan, 750021, China
| | - Bowen Wang
- Shaanxi Livestock and Poultry Breeding Generic Technology Research and Development Platform, Yangling, 712100, China; College of Economics and Management, Northwest A&F University (NWAFU), Yangling, 712100, China; Yangling Animal Husbandry Industry Innovation Center, Yangling, 712100, China; Shaanxi Animal Husbandry Industry Innovation Consortia, Yangling, 712100, China
| | - Guoping Yang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan, 750021, China
| | - Hua Li
- Shaanxi Livestock and Poultry Breeding Generic Technology Research and Development Platform, Yangling, 712100, China; College of Economics and Management, Northwest A&F University (NWAFU), Yangling, 712100, China; Yangling Animal Husbandry Industry Innovation Center, Yangling, 712100, China; Shaanxi Animal Husbandry Industry Innovation Consortia, Yangling, 712100, China.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China; The University of Arizona (UA), The Department of Environmental Science, Tucson, AZ, 85721, USA.
| |
Collapse
|
6
|
He L, Wang Y, Xi B, Zhao X, Cai D, Sun Y, Du Y, Zhang C. Synergistic removal of total petroleum hydrocarbons and antibiotic resistance genes in Yellow River Delta wetlands contaminated soil composting regulated by biogas slurry addition. ENVIRONMENTAL RESEARCH 2024; 252:118724. [PMID: 38518917 DOI: 10.1016/j.envres.2024.118724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The interactive effects between the emerging contaminant antibiotic resistance genes (ARGs) and the traditional pollutant total petroleum hydrocarbons (TPHs) in contaminated soils remain unclear. The synergistic removal of TPHs and ARGs from composted contaminated soil, along with the microbial mechanisms driven by the addition of biogas slurry, have not yet been investigated. This study explored the impact of biogas slurry on the synergistic degradation mechanisms and bacterial community dynamics of ARGs and TPHs in compost derived from contaminated soil. The addition of biogas slurry resulted in a reduction of targeted ARGs and mobile genetic elements (MGEs) by 9.96%-95.70% and 13.32%-97.66%, respectively. Biogas slurry changed the succession of bacterial communities during composting, thereby reducing the transmission risk of ARGs. Pseudomonas, Cellvibrio, and Devosia were identified as core microorganisms in the synergistic degradation of ARGs and TPHs. According to the partial least squares path model, temperature and NO3- indirectly influenced the removal of ARGs and TPHs by directly regulating the abundance and composition of host microbes and MGEs. In summary, the results of this study contribute to the high-value utilization of biogas slurry and provide methodological support for the low-cost remediation of contaminated soils.
Collapse
Affiliation(s)
- Liangzi He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Danmei Cai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yiwen Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yuewei Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chuanyan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| |
Collapse
|