1
|
Bao J, He J, Hu N, Xiong H, Chen Y, Huang L. Removal characteristics of heavy metals from polluted river water purified by hybrid constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178162. [PMID: 39708464 DOI: 10.1016/j.scitotenv.2024.178162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Heavy metal pollution in urban rivers has become a global issue. In this study, hybrid constructed wetlands (HCWs) were used to comprehensively evaluate the effectiveness of field wetland projects in removing heavy metals, with evaluation metrics including seasonal variations, plant contributions, and structure compositions. The experimental results showed that the synergistic system of root-microorganism-substrate formed in the combined process well realized the high efficiency of heavy metal removal, in which the removal rate in the warm season was higher than that in the cold season. The average removal rates of Cu, Zn, Cr, and Pb were 44.62 %, 43.12 %, 40.59 % and 45.18 %, respectively. In the effluent, Zn and Cr can better meet the corresponding standards of the US, EU, and CN, and the biotoxicity of Cu and Pb was also greatly reduced. Compared to Cu, Cr, and Pb, the removal of Zn was less affected by influent loads and stable removal was achieved. In HCWs, the primary contribution to heavy metal removal is attributed to sediment deposition, subsequently followed by the uptake by plant roots and stems, with adsorption onto fillers being the least significant. These results of the study show that HCWs can effectively treat heavy metal pollution in water bodies, and are a highly efficient process for ecological remediation of urban river water. Most importantly, HCWs have demonstrated strong adaptability during the operation of actual ecological restoration projects. Additionally, HCWs can adjust the component structure according to the specific conditions of the process to realize the highest efficiency, which provides a new idea for urban river ecological restoration.
Collapse
Affiliation(s)
- Jun'an Bao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Jinke He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Ning Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Haifeng Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400716, PR China.
| |
Collapse
|
2
|
Jiao F, Zhang X, Zhang T, Hu Y, Lu R, Ma G, Chen T, Guo H, Li D, Pan Y, Li YY, Kong Z. Insights into carbon-neutral treatment of rural wastewater by constructed wetlands: A review of current development and future direction. ENVIRONMENTAL RESEARCH 2024; 262:119796. [PMID: 39147183 DOI: 10.1016/j.envres.2024.119796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
In recent years, with the global rise in awareness regarding carbon neutrality, the treatment of wastewater in rural areas is increasingly oriented towards energy conservation, emission reduction, low-carbon output, and resource utilization. This paper provides an analysis of the advantages and disadvantages of the current low-carbon treatment process of low-carbon treatment for rural wastewater. Constructed wetlands (CWs) are increasingly being considered as a viable option for treating wastewater in rural regions. In pursuit of carbon neutrality, advanced carbon-neutral bioprocesses are regarded as the prospective trajectory for achieving carbon-neutral treatment of rural wastewater. The incorporation of CWs with emerging biotechnologies such as sulfur-based autotrophic denitrification (SAD), pyrite-based autotrophic denitrification (PAD), and anaerobic ammonia oxidation (anammox) enables efficient removal of nitrogen and phosphorus from rural wastewater. The advancement of CWs towards improved removal of organic and inorganic pollutants, sustainability, minimal energy consumption, and low carbon emissions is widely recognized as a viable low-carbon approach for achieving carbon-neutral treatment of rural wastewater. This study offers novel perspectives on the sustainable development of wastewater treatment in rural areas within the framework of achieving carbon neutrality in the future.
Collapse
Affiliation(s)
- Feifei Jiao
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xinzheng Zhang
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Zhang
- College of Design and Innovation, Shanghai International College of Design & Innovation, Tongji University, Shanghai, 200092, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Rui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guangyi Ma
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Chen
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hongbo Guo
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dapeng Li
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Zhe Kong
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
3
|
Kotsia D, Sympikou T, Topi E, Pappa F, Matsoukas C, Fountoulakis MS. Use of recycled construction and demolition waste as substrate in constructed wetlands for the wastewater treatment of cheese production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121324. [PMID: 38830284 DOI: 10.1016/j.jenvman.2024.121324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
Recycled building debris has recently emerged as a suitable wetland infill substrate due to its low density, exceptional water absorption capabilities, and high porosity. This study investigated, for the first time, the use of construction demolition wastes (CDW), and rock processing residues (RPR) as substrate materials in vertical-horizontal flow hybrid constructed wetlands for the treatment of cheese production wastewater. Results showed that the use of both CDW as well as RPR, as substrate material, provided an equal or even better quality of treated wastewater compared to the conventional use of gravel as a substrate. High removal efficiencies were recorded for turbidity (CDW: 91-92%, RPR: 97%), solids (CDW: 85-88%, RPR: 96-97%), organic matter (CDW: 79-84%, RPR: 96-98%), and total phosphorus (CDW: 72-76%, RPR: 87%) for both examined recycled materials. During the experiment, different loadings rates (HLR) were tested: 25 mm d-1 and 37.5 mm d-1. Radiological measurements indicate that, their use did not cause toxic effects on the environment, as the amounts of radioactivity found in the effluent of the systems are not significant. Increasing the hydraulic loading rate appeared to have no negative effect on pollutant removal, as the systems and plants were fully acclimated and mature. This approach offers several advantages, including the use of readily available and abundant waste material, potential cost savings, and the environmental benefits of recycling CDW and RPR instead of disposing of them in landfills.
Collapse
Affiliation(s)
- Dimitra Kotsia
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece.
| | - Theodora Sympikou
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | - Eleftheria Topi
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | - Filothei Pappa
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | - Christos Matsoukas
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | | |
Collapse
|
4
|
Hube S, Veronelli S, Li T, Burkhardt M, Brynjólfsson S, Wu B. Microplastics affect membrane biofouling and microbial communities during gravity-driven membrane filtration of primary wastewater. CHEMOSPHERE 2024; 353:141650. [PMID: 38462183 DOI: 10.1016/j.chemosphere.2024.141650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Recently, gravity-driven membrane (GDM) filtration has been adopted as an alternative solution for decentralized wastewater treatment due to easy installation and maintenance, reduced energy and operation cost, and low global warming impact. This study investigated the influence of microplastic size (0.5-0.8 μm and 40-48 μm) and amount (0.1 and 0.2 g/L) on the membrane performance and microbial community in GDM systems for primary municipal wastewater treatment. The results showed that dosing microplastics in the GDM systems led to 9-54% lower permeate flux than that in the control. This was attributed to more cake formation (up to 6.4-fold) with more deposition of extracellular polymeric substances (EPS, up to 1.5-fold) and divalent cations (up to 2.1-fold) in the presence of microplastics, especially with increasing microplastic amount or size. However, the dosed microplastics promoted formation of heterogeneous cake layers with more porous nature, possibly because microplastics created void space in the cake and also tended to bind with divalent cations to reduce EPS-divalent cations interactions. In the biofilm of the GDM systems, the presence of microplastics could lower the number of total species, but it greatly enhanced the abundance of certain dominant prokaryotes (Phenylobacterium haematophilum, Planctomycetota bacterium, and Flavobacteriales bacterium), eukaryotes (Stylonychia lemnae, Halteria grandinella, and Paramicrosporidium saccamoebae), and virus (phylum Nucleocytoviricota), as well as amino acid and lipid metabolic functions. Especially, the small-size microplastics at a higher dosed amount led to more variations of microbial community structure and microbial metabolic functions.
Collapse
Affiliation(s)
- Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Stefanie Veronelli
- Institute of Environmental and Process Engineering (UMTEC), Eastern Switzerland University of Applied Sciences, Oberseestrasse 10, 8640, Rapperswil, Switzerland
| | - Tian Li
- College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China.
| | - Michael Burkhardt
- Institute of Environmental and Process Engineering (UMTEC), Eastern Switzerland University of Applied Sciences, Oberseestrasse 10, 8640, Rapperswil, Switzerland
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland.
| |
Collapse
|