1
|
Hou J, Li J, Liu D, Yu H, Gao H, Wu F. Advancing fluorescence tracing with 3D-2D spectral conversion: A mixed culture on microbial degradation mechanisms of DOM from a large-scale watershed. ENVIRONMENTAL RESEARCH 2024; 262:119877. [PMID: 39216741 DOI: 10.1016/j.envres.2024.119877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Fluorescence tracing, known for its precision, rapid application, and cost-effectiveness, faces challenges due to the microbial degradation of dissolved organic matter (DOM) in aquatic environments, altering its original spectral fingerprint. This study conducted a 15-day microcosm experiment to examine the effects of biodegradation on the spectral properties of DOM from various sources: livestock excrement (EXC), urban sewage (URB), industrial wastewater (IND), and riparian topsoil (tDOM). Our findings show that while the spectral structures of DOM from different sources change during 15 days of microbial degradation, these changes do not overlap or interfere with each other. However, distinguishing between tDOM and URB in the presence of both IND and EXC is only possible at high resolution. Spectral index calculations revealed significant fluctuations and interference in FI and BIX indices among samples from different sources due to microbial degradation. In contrast, the HIX index exhibited independent fluctuations and remained a reliable spectral index for tracing. LEfSe (Linear discriminant analysis Effect Size) identified characteristic bio-indicators (CBI) for each DOM source. The CBI for tDOM and URB differed significantly; tDOM showed a marked CBI only within the first four days of microbial degradation, with a sharp decline in abundance thereafter, while URB's CBI remained abundant for 12 days. Similarly, IND's CBI maintained high relative abundance for the first 12 days. EXC's CBI was unique, showing a distinct and stable community only after six days of degradation, likely due to its high bioavailability and initial rapid microbial utilization. This study addresses the temporal variability in spectral tracing techniques caused by pollutant biodegradation. We developed a combined spectral-biological tracing technique using the "three-dimensional to two-dimensional" method along with bio-indicators, enhancing the accuracy and timeliness of spectral tracing.
Collapse
Affiliation(s)
- Junwen Hou
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiancheng Li
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dongping Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huibin Yu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hongjie Gao
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Fengchang Wu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
2
|
Liu X, Wu J, He S, Ge F, Liu N. Interaction between polycyclic aromatic hydrocarbons and thymine (T)-base induces double-strand DNA distortion in different species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175338. [PMID: 39117206 DOI: 10.1016/j.scitotenv.2024.175338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are potent inhibitors of DNA that can induce genetic damage, abnormal gene expression, and metabolic disorders upon interfacing with biological macromolecules. However, the mechanism of their interactions with DNA remains elusive. Therefore, this study selected three representative PAHs, including phenanthrene (Phen), pyrene (Pyre), and benzo[a]pyrene (B[a]P), and explored their binding mechanisms with the double-strand DNA (dsDNA) from different species, including 1J1V (Escherichia coli), 6J5B (Arabidopsis thaliana), and 6Q1V (Homo sapiens). The results revealed that binding between PAHs and dsDNA occurred in the groove via van der Waals forces and π-π stacking, with the carboxyl oxygen atom of the thymine (T)-base within dsDNA being the key binding site. This result was further confirmed by the spectroscopic experiments, where significant changes in the peak of the T-base were observed after PAHs-dsDNA binding. More interestingly, the total binding energies of Pyre with the three dsDNA were -138.800 kJ/mol (Pyre-1J1V), -105.523 kJ/mol (Pyre-6J5B), and -127.567 kJ/mol (Pyre-6Q1V), respectively, all of which were higher than those of Phen and B[a]P. This suggests that that Pyre has the strongest dsDNA binding ability. Additionally, analysis of the thermodynamic parameters indicated that the interactions between the three PAHs and dsDNA were exothermic reactions. In contrast, the Pyre-dsDNA interaction predominantly involved van der Waals forces and hydrogen bonding due to the enthalpy change (∆H) < 0 and entropy change (∆S) < 0, while the Phen-dsDNA and B[a]P-dsDNA interactions predominantly involved hydrophobic forces due to ∆H > 0 and ∆S > 0. Furthermore, Pyre caused local distortion of dsDNA, which was more pronounced under atomic force microscopy (AFM). In summary, this study has unveiled a new phenomenon of binding between PAHs and dsDNA. This sheds light on the carcinogenic potential and environmental impacts of PAHs pollution.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Key Laboratory of Environmental Eco-Health, Hunan, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jianjian Wu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Key Laboratory of Environmental Eco-Health, Hunan, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Shichong He
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Key Laboratory of Environmental Eco-Health, Hunan, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Key Laboratory of Environmental Eco-Health, Hunan, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
3
|
Ding H, Su J, Sun Y, Yu H, Zheng M, Xi B. Insight into spatial variations of DOM fractions and its interactions with microbial communities of shallow groundwater in a mesoscale lowland river watershed. WATER RESEARCH 2024; 258:121797. [PMID: 38781623 DOI: 10.1016/j.watres.2024.121797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Dissolved organic matter (DOM) plays a crucial role in driving biogeochemical processes and determining water quality in shallow groundwater systems, where DOM could be susceptible to dynamic influences of surface water influx. This study employed fluorescence excitation-emission matrix (EEM) spectroscopy combined with principal component coefficients, parallel factor analysis (PARAFAC), co-occurrence network analysis and structural equation modeling (SEM) to examine changes of DOM fractions from surface water to shallow groundwater in a mesoscale lowland river basin. Combining stable isotope and hydrochemical parameters, except for surface water (SW), two groups of groundwater samples were defined, namely, deeply influenced by surface water (IGW) and groundwater nearly non-influenced by surface water (UGW), which were 50.34 % and 19.39 % recharged by surface water, respectively. According to principal component coefficients, reassembled EEM data of these categories highlighted variations of the tyrosine-like peak in DOM. EEMs coupled with PARAFAC extracted five components (C1-C5), i.e. C1, protein-like substances, C2 and C4, humic-like substances, and C3 and C5, microbial-related substances. The abundance of the protein-like was SW > IGW > UGW, while the order of the humic-like was opposite. The bacterial communities exhibited an obvious cluster across three regions, which hinted their sensitivity to variations in environmental conditions. Based on co-occurrence, SW represented the highest connectivity between bacterial OTUs and DOM fractions, followed by IGW and UGW. SEM revealed that microbial activities increased bioavailability of the humic-like in the SW and IGW, whereas microbial compositions promoted the evolution of humic-like substances in the UGW. Generally, these results could be conducive to discern dissimilarity in DOM fractions across surface water and shallow groundwater, and further trace their interactions in the river watershed.
Collapse
Affiliation(s)
- Hongyu Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuanyuan Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Mingxia Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Wu C, Zhao Y, Geng Y, Shi K, Zhou S. Characterizing the regional distribution, interaction with microorganisms, and sources of dissolved organic matter for summer rainfall: Insights from spectroscopy, community structure, and back-trajectory analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172086. [PMID: 38556025 DOI: 10.1016/j.scitotenv.2024.172086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Dissolved organic matter (DOM) in rainfall participates in many biogeochemical cycles in aquatic environments and affects biological activities in water bodies. Revealing the characteristics of rainfall DOM could broaden our understanding of the carbon cycle. Therefore, the distribution characteristics and response mechanisms of DOM to microorganisms were investigated in different regions of Hebei. The results indicated that the water quality of the northern region was worse than that of the middle and southern regions. The two protein like components (C1, C2) and one humic like component (C3) were obtained; at high molecular weight (MW), the fluorescence intensity is high in the northern region (0.03 ± 0.02 R.U.), while at low MW, the fluorescence intensity is highest in the southern region (0.50 ± 0.18 R.U.). Furthermore, C2 is significantly positively correlated with C1 (P < 0.01), while C2 is significantly negatively correlated with C3 (P < 0.05) was observed. The spectral index results indicated that rainfall DOM exhibited low humification and highly autochthonous characteristics. The southern region obtained higher richness and diversity of microbial species than northern region (P < 0.05). The community exhibits significant spatiotemporal differences, and the Acinetobacter, Enterobacter, and Massilia, were dominant genus. Redundancy and network analyses showed that the effects of C1, C2, and nitrate on microorganisms increased with decreasing MW, while low MW exhibited a more complex network between DOM and microorganisms than high MW. Meanwhile, C1, C2 had a large total effect on β-diversity and function through structural equation modeling. The backward trajectory model indicates that the sources of air masses are from the northwest, local area, and sea in the northern, middle, and southern regions, respectively. This study broadened the understanding of the composition of summer rainfall DOM and its interactions with microorganisms during rainfall.
Collapse
Affiliation(s)
- Chenbin Wu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Yuting Zhao
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Yuting Geng
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Kun Shi
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Shilei Zhou
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China; School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China.
| |
Collapse
|
5
|
Mu D, Mu L, Geng X, Mohamed TA, Wei Z. Evolution from basic to advanced structure of fulvic acid and humic acid prepared by food waste. Int J Biol Macromol 2024; 256:128413. [PMID: 38029895 DOI: 10.1016/j.ijbiomac.2023.128413] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Fulvic acid (FA) and humic acid (HA) are common polyacids in nature. However, the evolutionary process of their basic and advanced structures is still unclear. FA and HA were separated into five molecular weight components to investigate the process of evolution from small to large molecules. The primary structure analysis showed that FA were rich in CN, COOH and OH content, while HA were rich in (CH2)n, NH2 and CC. Moreover, with the molecular weight increasing, the structures could complement each other to maintain the hydrophilic or hydrophobic balance. The 2D-COS spectroscopy demonstrated that during the growth of FA, COOH, NH2 and OH firstly respond. On the other hand, during the growth of HA, NH2 and (CH2)n firstly respond. In addition, advanced structure of FA was affected by intramolecular hydrogen bonds and π - π interaction. HA was affected by hydrophobic interactions due to the abundance of hydrophobic groups, primarily (CH2)n and benzene rings. 3D conformational fitting and particle size characterization confirmed that the interaction forces determine that FA and HA become tightly and loosely molecules respectively. This study is to further explore the geochemical formation and evolution process of FA and HA molecules.
Collapse
Affiliation(s)
- Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Linying Mu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Geng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Taha Ahmed Mohamed
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|