1
|
Yang Y, Wei L, Wang R, Zhao G, Yang S, Cheng H, Wu H, Huang Q. Uncovering the partitioning, transport flux and socioeconomic factors of organophosphate esters in an urban estuary of eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126132. [PMID: 40157482 DOI: 10.1016/j.envpol.2025.126132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The Yangtze River Estuary is considered as a critical transition zone for terrestrial organophosphate esters (OPEs) transported to the open sea, yet their environmental behavior and influencing drivers remain inadequately investigated. Here, we examine the occurrence of eleven OPEs across water, suspended particulate matter (SPM), and sediment, which reveals moderate pollution levels compared to other Chinese estuaries. The OPE partitioning processes are dependent on compound-specific partition coefficients (log Kd), hydraulic factors, and terrestrial input. Compounds with lower log Kow remain mostly dissolved or particulate-bound, whereas higher log Kow OPEs tend to be deposited in sediment. Riverine input and output emerge as the dominant transport pathways for OPEs within the YRE, with an annual input flux of 677 tons. Modeling reveals that tris(1-chloro-2-propyl) phosphate (TCIPP), tris(2-chloroethyl) phosphate (TCEP), and triethyl phosphate (TEP) face significant resuspension risks, indicating their increased transport into the open sea, while tris(2-ethylhexyl) phosphate (TEHP) presents a remarkable sedimentary risk due to its high hydrophobicity. The results suggest that the YRE functions as a source for resuspension-prone compounds and a sink for sediment-bound OPEs, demonstrating their distinct environmental fates. Additionally, aggravating pollution of OPEs has been observed in the Pearl River, Yellow River, and Yangtze River Estuaries with sustained wastewater discharge and rapid urbanization. This study provides an overview of the partitioning processes, transport mechanisms, and anthropogenic threats, thus underlining the need for effective pollution mitigation to protect estuarine ecosystems and promote sustainable water management.
Collapse
Affiliation(s)
- Ya Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lai Wei
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rui Wang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shouye Yang
- School of Ocean and Earth Science, Tongji University, Shanghai, 200092, China
| | - Haifeng Cheng
- Key Laboratory of Estuarine and Coastal Project, Ministry of Transport, Shanghai Estuarine and Coastal Science Research Center, Shanghai, 201201, China
| | - Hualin Wu
- Key Laboratory of Estuarine and Coastal Project, Ministry of Transport, Shanghai Estuarine and Coastal Science Research Center, Shanghai, 201201, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
2
|
Gao M, Wang Y, Wei L, Li S, Zhang Q, Yang Z, Bai M, Yao Y, Wang L, Sun H. Novel organophosphate esters and their transformation products in offshore sediment from Eastern China: Occurrence, temporal trend, and risk assessment. ENVIRONMENT INTERNATIONAL 2025; 195:109205. [PMID: 39675301 DOI: 10.1016/j.envint.2024.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Offshore sediment serves as an important sink for traditional organophosphate esters (TOPEs) originating from terrestrial sources. However, the contamination characteristics of novel OPEs (NOPEs) and their hydrolyzed and hydroxylated transformation products (Di- and OH-OPEs) in marine sediment are still unknown. In this study, 34 OPE-associated contaminants were measured in six offshore sediment cores (71 samples) collected from Eastern China. The total concentrations of Σ15TOPEs, Σ3NOPEs, Σ9Di-OPEs, and Σ7OH-OPEs in surface sediments were 3.16-73.4, n.d.-16.3, 4.48-21.4, and 0.14-0.42 ng g-1, respectively. NOPE compounds, such as tris(2,4-di-tert-butylphenyl) phosphate and its diester product, exhibited high contamination levels, primarily due to their high hydrophobicity and extensive industrial applications. Additionally, atmospheric transportation, along with wet and dry deposition and ocean currents, plays a crucial role in their distribution in offshore sediment. The location conditions and historical usage also influenced the vertical distributions of OPE-associated contaminants in sediment cores. Notably, a concentration peak of bis(2,4-di-tert-butylphenyl) phosphate (B2,4DtBPP) was dating back to 1940s, indicating the early usage of antioxidant tris(2,4-di-tert-butylphenyl) phosphite. Furthermore, a risk quotient (RQ) model was employed to assess the ecological risks posed by OPEs. Generally, the acute toxicity-based predicted no-effect concentrations for studied compounds were 1 to 2 orders of magnitude lower than those based on chronic toxicity. NOPEs and B2,4DtBPP exhibited high ecological risks, with maximum RQ values of 1570-4877 based on acute toxicity and 93.4-197 based on chronic toxicity. Notably, ΣRQ values for NOPEs were significantly higher than those of TOPEs (Mann-Whitney U test, p < 0.001), indicating their severe ecological risks in offshore sediment. Therefore, given the continuous input and considerable persistence of NOPEs in offshore sediment, their toxic effects and mechanisms warrant thorough investigation. This study provides the first evidence for the occurrence, temporal trends, and potential risks of NOPEs in marine sediment environment.
Collapse
Affiliation(s)
- Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Liman Wei
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Siyuan Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhongkang Yang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Lin J, Ding X, Gu J, Zhang L, Chao J, Zhang H, Feng S, Guo C, Xu J, Gao Z. Organophosphate esters (OPEs) pollution characteristics, bioaccumulation and human consumption implication in wild marine organisms from the Yellow River Estuary, China. MARINE POLLUTION BULLETIN 2024; 206:116708. [PMID: 38986395 DOI: 10.1016/j.marpolbul.2024.116708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
As the substitutes of polybrominated diphenyl ethers, organophosphate esters (OPEs) with high concentrations have accumulated in the estuaries, bays, and harbors. However, limited information is available about the OPEs in the estuary organism categories, especially under the multiple industrial pressure. This study investigated the occurrence, bioaccumulation and human consumption implication in wild marine organisms from the Yellow River Estuary, where located many petroleum and chemical manufacturing industries. This study found that concentrations of Σ13OPEs ranged from 547 ng/L to 1164 ng/L in seawater (median: 802 ng/L), from 384 to 1366 ng/g dw in the sediment (median: 601 ng/g dw), and from 419 to 959 ng/g dw (median: 560 ng/g dw) in the marine organisms. The congener compositions in the organisms were dominated by alkyl-OPEs (80.7 %), followed by halogenated-OPEs (18.8 %) and aryl-OPEs (0.5 %). Based on the principal component analysis, petrochemical pollution, and industrial wastewater discharge were distinguished as the main plausible sources of OPEs to the YRE ecosystem. Most OPEs had potential or strong bioaccumulation capacity on the organisms, with a positive correlation between log BAF (Bioaccumulation Factor) and log Kow of OPEs. The highest estimated daily intake value of OPEs was tri-n-propyl phosphate, exceeding 300 ng/kg·bw/day via consuming fish. The highest hazard quotients from OPEs ranged from 0.001 to 0.1, indicating a low risk to human health by consuming marine organisms in the YRE. As the consumption of OPEs increases year by year, the risks of OPEs still cannot be ignored.
Collapse
Affiliation(s)
- Jianing Lin
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xinshu Ding
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jinzeng Gu
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Lutao Zhang
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jinyu Chao
- School of Civil Engineering and Construction and Environment of Xihua University, Chengdu 610039, PR China
| | - Heng Zhang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Song Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Changsheng Guo
- Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Jian Xu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
4
|
Castro-Jiménez J, Aminot Y, Bely N, Pollono C, Idjaton BIT, Bizzozero L, Pierre-Duplessix O, Phuong NN, Gasperi J. Organophosphate ester additives and microplastics in benthic compartments from the Loire estuary (French Atlantic coast). MARINE POLLUTION BULLETIN 2024; 201:116256. [PMID: 38521000 DOI: 10.1016/j.marpolbul.2024.116256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
We report the first empirical confirmation of the co-occurrence of organophosphate esters (OPEs) additives and microplastics (MPs) in benthic compartments from the Loire estuary. Higher median concentrations of MPs (3387 items/kg dw), ∑13tri-OPEs (12.0 ng/g dw) and ∑4di-OPEs (0.7 ng/g dw) were measured in intertidal sediments with predominance of fine particles, and under higher anthropogenic pressures, with a general lack of seasonality. Contrarily, Scrobicularia plana showed up to 4-fold higher ∑tri-OPE concentrations in summer (reaching 37.0 ng/g dw), and similar spatial distribution. Polyethylene predominated in both compartments. Tris(2-ethylhexyl) phosphate (TEHP), its degradation metabolite (BEHP) and tris-(2-chloro, 1-methylethyl) phosphate (TCIPP) were the most abundant OPEs in sediments, while TCIPP predominated in S. plana. The biota-sediment accumulation factors suggest bioaccumulation potential for chlorinated-OPEs, with higher exposure in summer. No significant correlations were generally found between OPEs and MPs in sediments suggesting a limited role of MPs as in-situ source of OPEs.
Collapse
Affiliation(s)
- J Castro-Jiménez
- IFREMER, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France.
| | - Y Aminot
- IFREMER, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| | - N Bely
- IFREMER, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| | - C Pollono
- IFREMER, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| | - B I T Idjaton
- IFREMER, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| | | | | | - N N Phuong
- Univ Gustave Eiffel, GERS-LEE, F-44344 Bouguenais, France
| | - J Gasperi
- Univ Gustave Eiffel, GERS-LEE, F-44344 Bouguenais, France
| |
Collapse
|