1
|
Mullai P, Sambavi SM, Vishali S, Dharmalingam K, Sutha S, Dinesh S, Anandhi T, Al Noman MA, Bilyaminu AM, James A. An integrated review on the role of different biocatalysts, process parameters, bioreactor technologies and data-driven predictive models for upgrading biogas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125508. [PMID: 40327925 DOI: 10.1016/j.jenvman.2025.125508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
As energy consumption and waste generation from human activities continue to rise, the technology of anaerobic digestion (AD), which converts waste into bioenergy, has gained popularity. Biogas produced from AD commonly contains 60 % CH4, 40 % CO2 and a minor fraction of impurities. Currently, several anaerobic reactors have been designed to upgrade the biogas with biomethane content above 90 %. This review summarizes the current trends in the biological upgradation of biogas from a bio-circular economy perspective to achieve sustainable energy goals. Examples of applications reporting the latest advancements in treating industrial effluents using high-rate anaerobic reactors have been mentioned. The integrated anaerobic-aerobic hybrid reactor offers a solution to the limitations of traditional methods in treating diverse effluents. A special focus on biological upgradation techniques such as in-situ, ex-situ, and hybrid mechanisms have been briefed. The key advantage of hybrid upgradation is its ability to address the pH rise during in-situ process. Additionally, the applications of artificial neural networks and optimization to upgrade biogas production have been discussed. The review concludes with future research directives with emphasis on the economic viability of the approaches.
Collapse
Affiliation(s)
- P Mullai
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - S M Sambavi
- Department of Chemical and Biological Engineering, Energy Engineering with Industrial Management, University of Sheffield, Sheffield, United Kingdom.
| | - S Vishali
- Department of Chemical Engineering, SRM Institute of Science and Engineering, Kattankulathur, 603 203, Tamil Nadu, India.
| | - K Dharmalingam
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, Telangana, India.
| | - S Sutha
- Department of Instrumentation Engineering, Madras Institute of Technology, Anna University, Chromepet, Chennai, 600044, Tamil Nadu, India.
| | - S Dinesh
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - T Anandhi
- Department of Electronics and Instrumentation Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - Md Abdullah Al Noman
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - Abubakar M Bilyaminu
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - Anina James
- J & K Pocket, Dilshad Garden, Delhi, 110095, India.
| |
Collapse
|
2
|
Liu C, Cao Q, Luo X, Yan S, Sun Q, Zheng Y, Zhen G. In-depth exploration of microbial electrolysis cell coupled with anaerobic digestion (MEC-AD) for methanogenesis in treating protein wastewater at high organic loading rates. ENERGY CONVERSION AND MANAGEMENT 2025; 323:119152. [PMID: 39582929 PMCID: PMC11580529 DOI: 10.1016/j.enconman.2024.119152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
High concentrations of protein wastewater often reduce treatment efficiency due to ammonia inhibition and acid accumulation caused by its low carbon-to-nitrogen ratio (C/N) after digestion, as well as its complex structure. This study investigates the performance of a microbial electrolysis cell (MEC) driving a protein digestion system with gradually increasing organic loading rates (OLR) of bovine serum albumin, elucidating microbial changes and methanogenic metabolic pathways on bioelectrodes under high OLR "inhibited steady-state" (ISS) conditions. The results showed that the accumulation of ammonia nitrogen (AN) from protein hydrolysis under high OLR conditions disrupted microbial growth and caused cell death on the electrode surface, hindering the electron transfer rate. Toxic AN reduced protein hydrolysis, led to propionate accumulation, inhibiting the acetoclastic methanogenesis process and favoring the hydrogenotrophic pathway. As OLR increased from 6 to 11 gCOD/L, cumulative methane production increased significantly from 450.24 mL to 738.72 mL, while average methane yield and production rate decreased by 10.51% and 50.28%, from 375.20 mL/gCOD and 75.04 mL/(gCOD·d) to 335.78 mL/gCOD and 37.31 mL/(gCOD·d), respectively. Despite these declines, the system maintained an ISS. Moderate OLR increases can achieve an ISS, boosting protein waste treatment capacity, methane production, and net energy output (NEO), with an OLR of 6 gCOD/L being optimal for maximizing NEO per unit substrate. These findings provide theoretical insights into the methanogenesis pathway of high OLR proteins in MEC-AD systems and offer an effective method for treating high OLR protein wastewater in future practical applications.
Collapse
Affiliation(s)
- Changqing Liu
- College of Geographical Sciences, College of Carbon Neutral Future Technology, Fujian Normal University, Fuzhou 350007, China
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
| | - Qi Cao
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Shenghan Yan
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Qiyuan Sun
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Yuyi Zheng
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Guangyin Zhen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
Guo H, Gao M, Yao Y, Zou X, Zhang Y, Huang W, Liu Y. Enhancing anammox process with granular activated carbon: A study on Microbial Extracellular Secretions (MESs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171980. [PMID: 38537814 DOI: 10.1016/j.scitotenv.2024.171980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
Granular activated carbon (GAC), a porous carbon-based material, provides increased attachment space for functional microorganisms and enhances nitrogen removal by facilitating extracellular electron transfer in the anammox process. This study investigates the effects of GAC on the biosynthesis of microbial extracellular secretions (MESs) and explores the roles of these secretions in anammox activities. Four lab-scale reactors were operated: two downstream UASB reactors (D1 and D2) receiving effluents from the upstream UASB reactors (U1: no-GAC, U2: yes-GAC). Our results indicate that MESs were enhanced with the addition of GAC. The effluent from U2 exhibited a 59.62 % higher amino acid content than that from U1. These secretions contributed to an increase in the nitrogen loading rate (NLR) in the downstream reactors. Specifically, NLR in D1 increased from 130.5 to 142.7 g N/m3/day, and in D2, it escalated from 137.5 to 202.8 g N/m3/day, likely through acting as cross-feeding substrates or vital nutrients. D2 also showed increased anammox bacterial activity, enriched Ca. Brocadia population and hao gene abundance. Furthermore, this study revealed that D2 sludge has significantly higher extracellular polymeric substances (EPS) (48.71 mg/g VSS) and a larger average granule size (1.201 ± 0.119 mm) compared to D1 sludge. Overall, GAC-stimulated MESs may have contributed to the enhanced performance of the anammox process.
Collapse
Affiliation(s)
- Hengbo Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mengjiao Gao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yiduo Yao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xin Zou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yihui Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wendy Huang
- Department of Civil Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
4
|
Xing BS, Tang XF, Li LH, Fu YL, Liu JY, Wang YG, Sun XX, Li YY, Chen R, Jin RC. A new substrate equalization method for optimizing the influent conditions and fluid flow patterns of a multifed upflow anaerobic sludge blanket reactor with mature anammox granules. BIORESOURCE TECHNOLOGY 2024; 400:130700. [PMID: 38615969 DOI: 10.1016/j.biortech.2024.130700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
To improve nitrogen removal efficiency (NRE) and achieve homogenous distribution of anammox sludge and substrate, a new substrate equalization theory and a cumulative overload index was proposed for multifed upflow anaerobic sludge bed (MUASB) reactors with mature anammox granules. The performance and flow patterns of MUASB reactors were investigated under various influent conditions. The results showed that the nitrogen removal performance and stability of MUASB reactors could be optimized by minimizing the cumulative load. The NRE gradually increased from 83.3 ± 2.2 %, 86.8 ± 4.2 % to 89.3 ± 4.1 % and 89.7 ± 1.6 % in feeding flow tests and feeding port tests, respectively. Furthermore, the flow patterns were compared based on residence time distribution and computational fluid dynamics, indicating that a better equilibrium distribution of microorganisms and substrates could be achieved in the MUASB reactors under the lowest cumulative load. Therefore, substrate equalization theory can be used to optimize the nitrogen removal performance of MUASB reactors with low-carbon footprints.
Collapse
Affiliation(s)
- Bao-Shan Xing
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 9808579, Japan; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
| | - Xi-Fang Tang
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Ling-Hu Li
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Yu-Lin Fu
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Jia-Yi Liu
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Ya-Ge Wang
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Xin-Xin Sun
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 9808579, Japan
| | - Rong Chen
- School of Environmental and Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| |
Collapse
|