1
|
She Y, Wu L, Qi X, Sun S, Li Z. Aging behaviors intensify the impacts of microplastics on nitrate bioreduction-driven nitrogen cycling in freshwater sediments. WATER RESEARCH 2025; 279:123448. [PMID: 40064141 DOI: 10.1016/j.watres.2025.123448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 05/06/2025]
Abstract
Microplastics (MPs) inevitably undergo aging processes in natural environments; however, how aging behaviors influence the interactions between MPs exposures and nitrate bioreduction in freshwater sediments remains poorly understood. Here, we explored the distinct impacts of virgin and aged MPs (polystyrene (PS) and polylactic acid (PLA)) on nitrate bioreduction processes in lake sediments through a long-term microcosm experiment utilizing the 15N isotope tracing technique and molecular analysis. Compared to virgin MPs, aged PLA significantly increased the rates of denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) (p < 0.05), facilitating sediment nitrogen loss, while aged PS only significantly improved the rates of DNRA by 272-297 % and contributed to nitrogen retention in sediments. Metagenomic sequencing demonstrated that a more significant enrichment of functional genes responsible for nitrate bioreduction pathways occurred with aged MPs exposures than with virgin MPs. By combining analyses of MPs aging traits and the key drivers of nitrate bioreduction, we revealed that aging behaviors directly regulated sediment nutrient status (e.g., DOC/NOx- ratio) and microbiological properties (from genes to bacteria), thereby further determining the activity of nitrate bioreduction. This work provides new insights into the impacts of aged MPs on sediment nitrate reduction and highlights the role of MPs aging in future assessments of long-term MPs pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Yuecheng She
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liying Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Qi
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Siyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Ye J, Gao Y, Gao H, Zhao Q, Xu D, Zhou M, Shi M, Xue X. Effects of pristine and photoaged tire wear particles and their leachable additives on key nitrogen removal processes and nitrous oxide accumulation in estuarine sediments. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137136. [PMID: 39793389 DOI: 10.1016/j.jhazmat.2025.137136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/07/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Despite growing attention to the environmental pollution caused by tire wear particles (TWPs), the effects of pristine and photoaged TWPs (P-TWPs and A-TWPs) and their TWP leachates (TWPLs; P-TWPL and A-TWPL) on key nitrogen removal processes in estuarine sediments remain unclear. This study explores the responses of the denitrification rate, anammox rate, and nitrous oxide (N2O) accumulation to P-TWP, A-TWP, P-TWPL, and A-TWPL exposure in estuarine sediments, and assesses the potential biotoxic substances present in TWPLs. P-TWPs reduced the denitrification rate by 17.1 ± 10.0 % and increased N2O accumulation by 28.1 ± 18.7 %. The A-TWPs not only reduced the denitrification rate by 31.3 ± 8.3 % and increased N2O accumulation by 43.1 ± 22.0 %, but also decreased the anammox rate by 22.1 ± 13.3 %. A-TWPs further inhibited the denitrification rate by reducing nitrate reductase activity and the abundance of its gene (narG), while simultaneously decreasing hydrazine synthase activity and the abundance of its gene (hzo), thereby slowing the anammox rate. N2O accumulation after exposure to TWPs and TWPLs was positively correlated with the activity ratio of N2O-producing and N2O-consuming enzymes. Zinc (Zn) release in A-TWPL was 48.5 ± 6.9 % higher than that in P-TWPL, which is a crucial reason for the higher biotoxicity produced by A-TWPs. In addition, the abundance of denitrifying and anammox bacteria closely linked to the Zn, manganese, and arsenic concentrations in the TWPLs. This study provides insights into assessing the environmental risks posed by TWPs to estuarine ecosystems.
Collapse
Affiliation(s)
- Jinyu Ye
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China.
| | - Yuan Gao
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Huan Gao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Qingqing Zhao
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Dan Xu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Minjie Zhou
- Pingyang County Aojiang River Basin Water Conservancy Project Management Center, Wenzhou, Zhejiang 325401, China
| | - Meng Shi
- Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Xiangdong Xue
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China.
| |
Collapse
|
3
|
Wu L, Zhang X, Jin D, Wu P. Insights into combined stress mechanisms of microplastics and antibiotics on anammox: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124947. [PMID: 40081039 DOI: 10.1016/j.jenvman.2025.124947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 03/15/2025]
Abstract
The microplastic and antibiotic pollution poses a major threat to human health and natural ecology. Wastewater treatment systems act as a link between human societies and natural ecosystems. Microplastics (MPs) and antibiotics (ATs) in wastewater endanger the stabilization of the anaerobic ammonium oxidation (anammox) system. However, most existing studies have primarily concentrated on the effects and stress mechanisms of either MPs-induced or ATs-induced stress on anammox. A comprehensive and holistic overview of the effects and underlying mechanisms of the combined stress exerted on anammox by both MPs and ATs is currently lacking. This review concludes the effects of MPs and ATs on anammox bacteria (AnAOB) and describes the mechanisms of the effects of these two emerging contaminants on AnAOB. Subsequently, the effects that the combined stress of MPs and ATs can have on the anammox system are reviewed. The adsorption of ATs by MPs, an indispensable mechanism affecting the combined stress, is explained. Additionally, the effect of MPs' aging on their ability to adsorb ATs is presented. Finally, this paper proposes to alleviate the combined stress of MPs and ATs by enriching biofilms and points out the risk of propagation of ARGs under the combined stress. This review sheds light on valuable insights into the combined stress of MPs and ATs on anammox and points out future research directions for this combined stress.
Collapse
Affiliation(s)
- Long Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
4
|
Lan G, Huang X, Li T, Huang Y, Liao Y, Zheng Q, Zhao Q, Yu Y, Lin J. Effect of microplastics on carbon, nitrogen and phosphorus cycle in farmland soil: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125871. [PMID: 39971082 DOI: 10.1016/j.envpol.2025.125871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Farmland soil is a major sink for microplastics (MPs). Despite recognized potential impacts on soil ecosystems, comprehensive assessments of MPs' effects on carbon (C), nitrogen (N), and phosphorus (P) cycling in agricultural soils are limited. Data from 102 peer-reviewed studies were analyzed to elucidate the effects of MPs exposure on the C, N, and P cycles in soil. Results showed increased concentrations of soil organic carbon (SOC), dissolved organic carbon, microbial biomass carbon, and microbial biomass nitrogen, accompanied by elevated emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) after MPs introduction. A random forest model revealed that soil C, N, and P cycles are driven by MPs characteristics (biodegradability, size, concentration), soil properties (initial pH, SOC, total N, clay content), and experimental conditions (incubation period, soil moisture). Complex interactions between MPs and soil C, N, and P were illustrated, with increased CO2, CH4, and N2O emissions due to C mineralization and enhanced denitrification rates caused by MPs. These negative effects imply a need for strengthened management of C, N, and P cycles in agricultural soil to reduce farmland ecosystems' contributions to greenhouse gas emissions.
Collapse
Affiliation(s)
- Guoxin Lan
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Xiaohang Huang
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Tongqing Li
- Upper Changjiang River Bureau of Hydrological and Water Resources Survey, Bureau of Hydrology, Changjiang Water Resources Commission, Chongqing, 400025, PR China
| | - Yingjie Huang
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Yang Liao
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Qiushi Zheng
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Qin Zhao
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Yue Yu
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Junjie Lin
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China.
| |
Collapse
|
5
|
Wei Z, Ma X, Chai Y, Senbayram M, Wang X, Wu M, Zhang G, Cai S, Ma J, Xu H, Bol R, Rillig MC, Ji R, Yan X, Shan J. Tire Wear Particles Exposure Enhances Denitrification in Soil by Enriching Labile DOM and Shaping the Microbial Community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1209-1221. [PMID: 39725382 DOI: 10.1021/acs.est.4c09766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Tire wear particles (TWP) are emerging contaminants in the soil environment due to their widespread occurrence and potential threat to soil health. However, their impacts on soil biogeochemical processes remain unclear. Here, we investigated the effects of TWP at various doses and their leachate on soil respiration and denitrification using a robotized continuous-flow incubation system in upland soil. Fourier transform ion cyclotron resonance mass spectrometry and high-throughput sequencing were employed to elucidate the mechanisms underpinning the TWP effects. We show that TWP increased soil CO2, N2, and N2O emissions, which were attributed to the changes in content and composition of soil dissolved organic matter (DOM) induced by TWP and their leachate. Specifically, the labile DOM components (H/C ≥ 1.5 and transformation >10), which were crucial in shaping the denitrifying community, were significantly enriched by TWP exposure. Furthermore, the abundances of denitrification genes (nirK/S and nosZ-I) and the specific denitrifying genera Pseudomonas were increased following TWP exposure. Our findings provide new insights into impacts of TWP on carbon and nitrogen cycling in soil, highlighting that TWP exposure may exacerbate greenhouse gas emissions and fertilizer N loss, posing adverse effects on soil fertility in peri-urban areas and climate change mitigation.
Collapse
Affiliation(s)
- Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Nanjing, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yanchao Chai
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mehmet Senbayram
- Institute of Plant Nutrition and Soil Science, University of Harran, Osmanbey, Sanliurfa 63000, Turkey
| | - Xiaomin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guangbin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shujie Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jing Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hua Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Roland Bol
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin 14195, Germany
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Nanjing, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Nanjing, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Wu J, Li L, Chen M, Liu M, Tu W. Modulation of irrigation-induced microbial nitrogen‑iron redox to per- and polyfluoroalkyl substances' water-soil interface release in paddy fields: Activation or immobilization? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177377. [PMID: 39505044 DOI: 10.1016/j.scitotenv.2024.177377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/11/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Understanding the modulation of paddy field irrigation to the migration of per- and polyfluoroalkyl substances (PFAS) at the water-soil interface is pivotal for the management of PFAS pollution in paddy soil and surrounding surface water environments. In flooded soils, soil organic matter was transformed into aromatic protein-like dissolved organic matter (DOM). Meanwhile, Na+, K+, and Mg2+ were translocated into extracellular polymeric substances (EPS) under the catalysis of cation channel enzymes (p < 0.05), provided ion bridging for the binding of DOM and PFAS, and accelerated the accumulation of C4-C9 PFAS in overlying water (41.79-99.14 %). Short-chain PFAS's accumulation in soil solution of drought soils was stimulated by microorganisms secreting soluble microbial by-product-like DOM (53.15-97.96 %). Furthermore, PFAS's distribution in flood soils was dominated by bacterial denitrification and iron-reduction, whereas iron-oxidation and ammoxidation controlled that in drought soils. The transformation of organic carbon including CO and COC caused by irrigation-induced redox modulated PFAS cross-media translocation. Iron‑nitrogen redox in flooded paddy soils immobilized the PFAS's migration into overlying water (p < 0.05). Our findings have profound implications for PFAS's pollution control, surface water environmental protection, and rice production security in paddy fields.
Collapse
Affiliation(s)
- Jianyi Wu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingxuan Li
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Miao Chen
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meiyu Liu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenqing Tu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
7
|
Ma X, Wei Z, Wang X, Li C, Feng X, Shan J, Yan X, Ji R. Microplastics from polyvinyl chloride agricultural plastic films do not change nitrogenous gas emission but enhance denitrification potential. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135758. [PMID: 39244981 DOI: 10.1016/j.jhazmat.2024.135758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/04/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The effects of microplastics (MPs) from agricultural plastic films on soil nitrogen transformation, especially denitrification, are still obscure. Here, using a robotized flow-through system, we incubated vegetable upland soil cores for 66 days with MPs from PE mulching film (F-PE) and PVC greenhouse film (F-PVC) and directly quantified the emissions of nitrogenous gases from denitrification under oxic conditions, as well as the denitrification potential under anoxic conditions. The impact of MPs on soil nitrogen transformation was largely determined by the concentration of the additive phthalate esters (PAEs) containing in the MPs. The F-PE MPs with low level of PAEs (about 0.006 %) had no significant effect on soil mineral nitrogen content and nitrogenous gas emissions under oxic conditions. In contrast, the F-PVC MPs with high levels of PAEs (about 11 %) reduced soil nitrate content under oxic conditions, probably owing to promoted microbial assimilation of nitrogen, as the emissions of denitrification products (N2, NO, and N2O) was not affected. However, the F-PVC MPs significantly enhanced the denitrification potential of the soil due to the increased abundance of denitrifiers under anoxic conditions. These findings highlight the disturbance of MPs from agricultural films, particularly the additive PAEs on nitrogen transformation in soil ecosystems.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Zhou Z, Hua J, Xue J, Yu C. Differential impacts of polyethylene microplastic and additives on soil nitrogen cycling: A deeper dive into microbial interactions and transformation mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173771. [PMID: 38851351 DOI: 10.1016/j.scitotenv.2024.173771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The impact of microplastics and their additives on soil nutrient cycling, particularly through microbial mechanisms, remains underexplored. This study investigated the effects of polyethylene microplastics, polyethylene resin, and plastic additives on soil nitrogen content, physicochemical properties, nitrogen cycling functional genes, microbial composition, and nitrogen transformation rates. Results showed that all amendments increased total nitrogen but decreased dissolved total nitrogen. Polyethylene microplastics and additives increased dissolved organic nitrogen, while polyethylene resin reduced it and exhibited higher microbial biomass. Amendments reduced or did not change inorganic nitrogen levels, with additives showing the lowest values. Polyethylene resin favored microbial nitrogen immobilization, while additives were more inhibitory. Amendment type and content significantly interacted with nitrogen cycling genes and microbial composition. Distinct functional microbial biomarkers and network structures were identified for different amendments. Polyethylene microplastics had higher gross ammonification, nitrification, and immobilization rates, followed by polyethylene resin and additives. Nitrogen transformation was driven by multiple functional genes, with Proteobacteria playing a significant role. Soil physicochemical properties affected nitrogen content through transformation rates, with C/N ratio having an indirect effect and water holding capacity directly impacting it. In summary, plastic additives, compared to polyethylene microplastics and resin, are less conducive to nitrogen degradation and microbial immobilization, exert significant effects on microbial community structure, inhibit transformation rates, and ultimately impact nitrogen cycling.
Collapse
Affiliation(s)
- Zhidong Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Jianfeng Hua
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China.
| | - Jianhui Xue
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chaoguang Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| |
Collapse
|
9
|
Han H, Song P, Jiang Y, Fan J, Khan A, Liu P, Mašek O, Li X. Biochar immobilized hydrolase degrades PET microplastics and alleviates the disturbance of soil microbial function via modulating nitrogen and phosphorus cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134838. [PMID: 38850944 DOI: 10.1016/j.jhazmat.2024.134838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Microplastics (MPs) pose an emerging threat to soil ecological function, yet effective solutions remain limited. This study introduces a novel approach using magnetic biochar immobilized PET hydrolase (MB-LCC-FDS) to degrade soil polyethylene terephthalate microplastics (PET-MPs). MB-LCC-FDS exhibited a 1.68-fold increase in relative activity in aquatic solutions and maintained 58.5 % residual activity after five consecutive cycles. Soil microcosm experiment amended with MB-LCC-FDS observed a 29.6 % weight loss of PET-MPs, converting PET into mono(2-hydroxyethyl) terephthalate (MHET). The generated MHET can subsequently be metabolized by soil microbiota to release terephthalic acid. The introduction of MB-LCC-FDS shifted the functional composition of soil microbiota, increasing the relative abundances of Microbacteriaceae and Skermanella while reducing Arthobacter and Vicinamibacteraceae. Metagenomic analysis revealed that MB-LCC-FDS enhanced nitrogen fixation, P-uptake and transport, and organic-P mineralization in PET-MPs contaminated soil, while weakening the denitrification and nitrification. Structural equation model indicated that changes in soil total carbon and Simpson index, induced by MB-LCC-FDS, were the driving factors for soil carbon and nitrogen transformation. Overall, this study highlights the synergistic role of magnetic biochar-immobilized PET hydrolase and soil microbiota in degrading soil PET-MPs, and enhances our understanding of the microbiome and functional gene responses to PET-MPs and MB-LCC-FDS in soil systems.
Collapse
Affiliation(s)
- Huawen Han
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Peizhi Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchao Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Jingwen Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, Edinburgh EH9 3FF, United Kingdom.
| | - Xiangkai Li
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
10
|
Xu S, Zhao R, Sun J, Sun Y, Xu G, Wang F. Microplastics change soil properties, plant performance, and bacterial communities in salt-affected soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134333. [PMID: 38643581 DOI: 10.1016/j.jhazmat.2024.134333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Microplastics (MPs) are emerging contaminants found globally. However, their effects on soil-plant systems in salt-affected habitats remain unknown. Here, we examined the effects of polyethylene (PE) and polylactic acid (PLA) on soil properties, maize performance, and bacterial communities in soils with different salinity levels. Overall, MPs decreased soil electrical conductivity and increased NH4+-N and NO3--N contents. Adding NaCl alone had promoting and inhibitive effects on plant growth in a concentration-dependent manner. Overall, the addition of 0.2% PLA increased shoot biomass, while 2% PLA decreased it. Salinity increased Na content and decreased K/Na ratio in plant tissues (particularly roots), which were further modified by MPs. NaCl and MPs singly and jointly regulated the expression of functional genes related to salt tolerance in leaves, including ZMSOS1, ZMHKT1, and ZMHAK1. Exposure to NaCl alone had a slight effect on soil bacterial α-diversity, but in most cases, MPs increased ACE, Chao1, and Shannon indexes. Both MPs and NaCl altered bacterial community composition, although the specific effects varied depending on the type and concentration of MPs and the salinity level. Overall, PLA had more pronounced effects on soil-plant systems compared to PE. These findings bridge knowledge gaps in the risks of MPs in salt-affected habitats.
Collapse
Affiliation(s)
- Shuang Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Rong Zhao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong 261000, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China.
| |
Collapse
|